| from .module import Module |
| from .. import functional as F |
| |
| from torch import Tensor |
| from typing import Optional |
| from ..common_types import _size_2_t, _ratio_2_t, _size_any_t, _ratio_any_t |
| |
| __all__ = ['Upsample', 'UpsamplingNearest2d', 'UpsamplingBilinear2d'] |
| |
| |
| class Upsample(Module): |
| r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. |
| |
| The input data is assumed to be of the form |
| `minibatch x channels x [optional depth] x [optional height] x width`. |
| Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor. |
| |
| The algorithms available for upsampling are nearest neighbor and linear, |
| bilinear, bicubic and trilinear for 3D, 4D and 5D input Tensor, |
| respectively. |
| |
| One can either give a :attr:`scale_factor` or the target output :attr:`size` to |
| calculate the output size. (You cannot give both, as it is ambiguous) |
| |
| Args: |
| size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional): |
| output spatial sizes |
| scale_factor (float or Tuple[float] or Tuple[float, float] or Tuple[float, float, float], optional): |
| multiplier for spatial size. Has to match input size if it is a tuple. |
| mode (str, optional): the upsampling algorithm: one of ``'nearest'``, |
| ``'linear'``, ``'bilinear'``, ``'bicubic'`` and ``'trilinear'``. |
| Default: ``'nearest'`` |
| align_corners (bool, optional): if ``True``, the corner pixels of the input |
| and output tensors are aligned, and thus preserving the values at |
| those pixels. This only has effect when :attr:`mode` is |
| ``'linear'``, ``'bilinear'``, ``'bicubic'``, or ``'trilinear'``. |
| Default: ``False`` |
| recompute_scale_factor (bool, optional): recompute the scale_factor for use in the |
| interpolation calculation. If `recompute_scale_factor` is ``True``, then |
| `scale_factor` must be passed in and `scale_factor` is used to compute the |
| output `size`. The computed output `size` will be used to infer new scales for |
| the interpolation. Note that when `scale_factor` is floating-point, it may differ |
| from the recomputed `scale_factor` due to rounding and precision issues. |
| If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will |
| be used directly for interpolation. |
| |
| Shape: |
| - Input: :math:`(N, C, W_{in})`, :math:`(N, C, H_{in}, W_{in})` or :math:`(N, C, D_{in}, H_{in}, W_{in})` |
| - Output: :math:`(N, C, W_{out})`, :math:`(N, C, H_{out}, W_{out})` |
| or :math:`(N, C, D_{out}, H_{out}, W_{out})`, where |
| |
| .. math:: |
| D_{out} = \left\lfloor D_{in} \times \text{scale\_factor} \right\rfloor |
| |
| .. math:: |
| H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor |
| |
| .. math:: |
| W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor |
| |
| .. warning:: |
| With ``align_corners = True``, the linearly interpolating modes |
| (`linear`, `bilinear`, `bicubic`, and `trilinear`) don't proportionally |
| align the output and input pixels, and thus the output values can depend |
| on the input size. This was the default behavior for these modes up to |
| version 0.3.1. Since then, the default behavior is |
| ``align_corners = False``. See below for concrete examples on how this |
| affects the outputs. |
| |
| .. note:: |
| If you want downsampling/general resizing, you should use :func:`~nn.functional.interpolate`. |
| |
| Examples:: |
| |
| >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) |
| >>> input |
| tensor([[[[1., 2.], |
| [3., 4.]]]]) |
| |
| >>> m = nn.Upsample(scale_factor=2, mode='nearest') |
| >>> m(input) |
| tensor([[[[1., 1., 2., 2.], |
| [1., 1., 2., 2.], |
| [3., 3., 4., 4.], |
| [3., 3., 4., 4.]]]]) |
| |
| >>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles") |
| >>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False |
| >>> m(input) |
| tensor([[[[1.0000, 1.2500, 1.7500, 2.0000], |
| [1.5000, 1.7500, 2.2500, 2.5000], |
| [2.5000, 2.7500, 3.2500, 3.5000], |
| [3.0000, 3.2500, 3.7500, 4.0000]]]]) |
| |
| >>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
| >>> m(input) |
| tensor([[[[1.0000, 1.3333, 1.6667, 2.0000], |
| [1.6667, 2.0000, 2.3333, 2.6667], |
| [2.3333, 2.6667, 3.0000, 3.3333], |
| [3.0000, 3.3333, 3.6667, 4.0000]]]]) |
| |
| >>> # Try scaling the same data in a larger tensor |
| >>> input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3) |
| >>> input_3x3[:, :, :2, :2].copy_(input) |
| tensor([[[[1., 2.], |
| [3., 4.]]]]) |
| >>> input_3x3 |
| tensor([[[[1., 2., 0.], |
| [3., 4., 0.], |
| [0., 0., 0.]]]]) |
| |
| >>> # xdoctest: +IGNORE_WANT("seems to fail when other tests are run in the same session") |
| >>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False |
| >>> # Notice that values in top left corner are the same with the small input (except at boundary) |
| >>> m(input_3x3) |
| tensor([[[[1.0000, 1.2500, 1.7500, 1.5000, 0.5000, 0.0000], |
| [1.5000, 1.7500, 2.2500, 1.8750, 0.6250, 0.0000], |
| [2.5000, 2.7500, 3.2500, 2.6250, 0.8750, 0.0000], |
| [2.2500, 2.4375, 2.8125, 2.2500, 0.7500, 0.0000], |
| [0.7500, 0.8125, 0.9375, 0.7500, 0.2500, 0.0000], |
| [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) |
| |
| >>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
| >>> # Notice that values in top left corner are now changed |
| >>> m(input_3x3) |
| tensor([[[[1.0000, 1.4000, 1.8000, 1.6000, 0.8000, 0.0000], |
| [1.8000, 2.2000, 2.6000, 2.2400, 1.1200, 0.0000], |
| [2.6000, 3.0000, 3.4000, 2.8800, 1.4400, 0.0000], |
| [2.4000, 2.7200, 3.0400, 2.5600, 1.2800, 0.0000], |
| [1.2000, 1.3600, 1.5200, 1.2800, 0.6400, 0.0000], |
| [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) |
| """ |
| __constants__ = ['size', 'scale_factor', 'mode', 'align_corners', 'name', 'recompute_scale_factor'] |
| name: str |
| size: Optional[_size_any_t] |
| scale_factor: Optional[_ratio_any_t] |
| mode: str |
| align_corners: Optional[bool] |
| recompute_scale_factor: Optional[bool] |
| |
| def __init__(self, size: Optional[_size_any_t] = None, scale_factor: Optional[_ratio_any_t] = None, |
| mode: str = 'nearest', align_corners: Optional[bool] = None, |
| recompute_scale_factor: Optional[bool] = None) -> None: |
| super().__init__() |
| self.name = type(self).__name__ |
| self.size = size |
| if isinstance(scale_factor, tuple): |
| self.scale_factor = tuple(float(factor) for factor in scale_factor) |
| else: |
| self.scale_factor = float(scale_factor) if scale_factor else None |
| self.mode = mode |
| self.align_corners = align_corners |
| self.recompute_scale_factor = recompute_scale_factor |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners, |
| recompute_scale_factor=self.recompute_scale_factor) |
| |
| def extra_repr(self) -> str: |
| if self.scale_factor is not None: |
| info = 'scale_factor=' + repr(self.scale_factor) |
| else: |
| info = 'size=' + repr(self.size) |
| info += ', mode=' + repr(self.mode) |
| return info |
| |
| |
| class UpsamplingNearest2d(Upsample): |
| r"""Applies a 2D nearest neighbor upsampling to an input signal composed of several input |
| channels. |
| |
| To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor` |
| as it's constructor argument. |
| |
| When :attr:`size` is given, it is the output size of the image `(h, w)`. |
| |
| Args: |
| size (int or Tuple[int, int], optional): output spatial sizes |
| scale_factor (float or Tuple[float, float], optional): multiplier for |
| spatial size. |
| |
| .. warning:: |
| This class is deprecated in favor of :func:`~nn.functional.interpolate`. |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| |
| .. math:: |
| H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor |
| |
| .. math:: |
| W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor |
| |
| Examples:: |
| |
| >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) |
| >>> input |
| tensor([[[[1., 2.], |
| [3., 4.]]]]) |
| |
| >>> m = nn.UpsamplingNearest2d(scale_factor=2) |
| >>> m(input) |
| tensor([[[[1., 1., 2., 2.], |
| [1., 1., 2., 2.], |
| [3., 3., 4., 4.], |
| [3., 3., 4., 4.]]]]) |
| """ |
| def __init__(self, size: Optional[_size_2_t] = None, scale_factor: Optional[_ratio_2_t] = None) -> None: |
| super().__init__(size, scale_factor, mode='nearest') |
| |
| |
| class UpsamplingBilinear2d(Upsample): |
| r"""Applies a 2D bilinear upsampling to an input signal composed of several input |
| channels. |
| |
| To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor` |
| as it's constructor argument. |
| |
| When :attr:`size` is given, it is the output size of the image `(h, w)`. |
| |
| Args: |
| size (int or Tuple[int, int], optional): output spatial sizes |
| scale_factor (float or Tuple[float, float], optional): multiplier for |
| spatial size. |
| |
| .. warning:: |
| This class is deprecated in favor of :func:`~nn.functional.interpolate`. It is |
| equivalent to ``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``. |
| |
| Shape: |
| - Input: :math:`(N, C, H_{in}, W_{in})` |
| - Output: :math:`(N, C, H_{out}, W_{out})` where |
| |
| .. math:: |
| H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor |
| |
| .. math:: |
| W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor |
| |
| Examples:: |
| |
| >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) |
| >>> input |
| tensor([[[[1., 2.], |
| [3., 4.]]]]) |
| |
| >>> # xdoctest: +IGNORE_WANT("do other tests modify the global state?") |
| >>> m = nn.UpsamplingBilinear2d(scale_factor=2) |
| >>> m(input) |
| tensor([[[[1.0000, 1.3333, 1.6667, 2.0000], |
| [1.6667, 2.0000, 2.3333, 2.6667], |
| [2.3333, 2.6667, 3.0000, 3.3333], |
| [3.0000, 3.3333, 3.6667, 4.0000]]]]) |
| """ |
| def __init__(self, size: Optional[_size_2_t] = None, scale_factor: Optional[_ratio_2_t] = None) -> None: |
| super().__init__(size, scale_factor, mode='bilinear', align_corners=True) |