blob: 60abb1ac574cfb6b4fa68b3ad1aa444956f632c9 [file] [log] [blame]
import torch
import torch.nn as nn
from torch.nn import Parameter
import torch.jit as jit
import warnings
from collections import namedtuple
from typing import List, Tuple
from torch import Tensor
import numbers
'''
Some helper classes for writing custom TorchScript LSTMs.
Goals:
- Classes are easy to read, use, and extend
- Performance of custom LSTMs approach fused-kernel-levels of speed.
A few notes about features we could add to clean up the below code:
- Support enumerate with nn.ModuleList:
https://github.com/pytorch/pytorch/issues/14471
- Support enumerate/zip with lists:
https://github.com/pytorch/pytorch/issues/15952
- Support overriding of class methods:
https://github.com/pytorch/pytorch/issues/10733
- Support passing around user-defined namedtuple types for readability
- Support slicing w/ range. It enables reversing lists easily.
https://github.com/pytorch/pytorch/issues/10774
- Multiline type annotations. List[List[Tuple[Tensor,Tensor]]] is verbose
https://github.com/pytorch/pytorch/pull/14922
'''
def script_lstm(input_size, hidden_size, num_layers, bias=True,
batch_first=False, dropout=False, bidirectional=False):
'''Returns a ScriptModule that mimics a PyTorch native LSTM.'''
# The following are not implemented.
assert bias
assert not batch_first
if bidirectional:
stack_type = StackedLSTM2
layer_type = BidirLSTMLayer
dirs = 2
elif dropout:
stack_type = StackedLSTMWithDropout
layer_type = LSTMLayer
dirs = 1
else:
stack_type = StackedLSTM
layer_type = LSTMLayer
dirs = 1
return stack_type(num_layers, layer_type,
first_layer_args=[LSTMCell, input_size, hidden_size],
other_layer_args=[LSTMCell, hidden_size * dirs,
hidden_size])
def script_lnlstm(input_size, hidden_size, num_layers, bias=True,
batch_first=False, dropout=False, bidirectional=False,
decompose_layernorm=False):
'''Returns a ScriptModule that mimics a PyTorch native LSTM.'''
# The following are not implemented.
assert bias
assert not batch_first
assert not dropout
if bidirectional:
stack_type = StackedLSTM2
layer_type = BidirLSTMLayer
dirs = 2
else:
stack_type = StackedLSTM
layer_type = LSTMLayer
dirs = 1
return stack_type(num_layers, layer_type,
first_layer_args=[LayerNormLSTMCell, input_size, hidden_size,
decompose_layernorm],
other_layer_args=[LayerNormLSTMCell, hidden_size * dirs,
hidden_size, decompose_layernorm])
LSTMState = namedtuple('LSTMState', ['hx', 'cx'])
def reverse(lst: List[Tensor]) -> List[Tensor]:
return lst[::-1]
class LSTMCell(jit.ScriptModule):
def __init__(self, input_size, hidden_size):
super(LSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.randn(4 * hidden_size, input_size))
self.weight_hh = Parameter(torch.randn(4 * hidden_size, hidden_size))
self.bias_ih = Parameter(torch.randn(4 * hidden_size))
self.bias_hh = Parameter(torch.randn(4 * hidden_size))
@jit.script_method
def forward(self, input: Tensor, state: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = state
gates = (torch.mm(input, self.weight_ih.t()) + self.bias_ih +
torch.mm(hx, self.weight_hh.t()) + self.bias_hh)
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * torch.tanh(cy)
return hy, (hy, cy)
class LayerNorm(jit.ScriptModule):
def __init__(self, normalized_shape):
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
# XXX: This is true for our LSTM / NLP use case and helps simplify code
assert len(normalized_shape) == 1
self.weight = Parameter(torch.ones(normalized_shape))
self.bias = Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
@jit.script_method
def compute_layernorm_stats(self, input):
mu = input.mean(-1, keepdim=True)
sigma = input.std(-1, keepdim=True, unbiased=False)
return mu, sigma
@jit.script_method
def forward(self, input):
mu, sigma = self.compute_layernorm_stats(input)
return (input - mu) / sigma * self.weight + self.bias
class LayerNormLSTMCell(jit.ScriptModule):
def __init__(self, input_size, hidden_size, decompose_layernorm=False):
super(LayerNormLSTMCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.weight_ih = Parameter(torch.randn(4 * hidden_size, input_size))
self.weight_hh = Parameter(torch.randn(4 * hidden_size, hidden_size))
# The layernorms provide learnable biases
if decompose_layernorm:
ln = LayerNorm
else:
ln = nn.LayerNorm
self.layernorm_i = ln(4 * hidden_size)
self.layernorm_h = ln(4 * hidden_size)
self.layernorm_c = ln(hidden_size)
@jit.script_method
def forward(self, input: Tensor, state: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
hx, cx = state
igates = self.layernorm_i(torch.mm(input, self.weight_ih.t()))
hgates = self.layernorm_h(torch.mm(hx, self.weight_hh.t()))
gates = igates + hgates
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = self.layernorm_c((forgetgate * cx) + (ingate * cellgate))
hy = outgate * torch.tanh(cy)
return hy, (hy, cy)
class LSTMLayer(jit.ScriptModule):
def __init__(self, cell, *cell_args):
super(LSTMLayer, self).__init__()
self.cell = cell(*cell_args)
@jit.script_method
def forward(self, input: Tensor, state: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
inputs = input.unbind(0)
outputs = torch.jit.annotate(List[Tensor], [])
for i in range(len(inputs)):
out, state = self.cell(inputs[i], state)
outputs += [out]
return torch.stack(outputs), state
class ReverseLSTMLayer(jit.ScriptModule):
def __init__(self, cell, *cell_args):
super(ReverseLSTMLayer, self).__init__()
self.cell = cell(*cell_args)
@jit.script_method
def forward(self, input: Tensor, state: Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
inputs = reverse(input.unbind(0))
outputs = jit.annotate(List[Tensor], [])
for i in range(len(inputs)):
out, state = self.cell(inputs[i], state)
outputs += [out]
return torch.stack(reverse(outputs)), state
class BidirLSTMLayer(jit.ScriptModule):
__constants__ = ['directions']
def __init__(self, cell, *cell_args):
super(BidirLSTMLayer, self).__init__()
self.directions = nn.ModuleList([
LSTMLayer(cell, *cell_args),
ReverseLSTMLayer(cell, *cell_args),
])
@jit.script_method
def forward(self, input: Tensor, states: List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]]:
# List[LSTMState]: [forward LSTMState, backward LSTMState]
outputs = jit.annotate(List[Tensor], [])
output_states = jit.annotate(List[Tuple[Tensor, Tensor]], [])
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for direction in self.directions:
state = states[i]
out, out_state = direction(input, state)
outputs += [out]
output_states += [out_state]
i += 1
return torch.cat(outputs, -1), output_states
def init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args):
layers = [layer(*first_layer_args)] + [layer(*other_layer_args)
for _ in range(num_layers - 1)]
return nn.ModuleList(layers)
class StackedLSTM(jit.ScriptModule):
__constants__ = ['layers'] # Necessary for iterating through self.layers
def __init__(self, num_layers, layer, first_layer_args, other_layer_args):
super(StackedLSTM, self).__init__()
self.layers = init_stacked_lstm(num_layers, layer, first_layer_args,
other_layer_args)
@jit.script_method
def forward(self, input: Tensor, states: List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]]:
# List[LSTMState]: One state per layer
output_states = jit.annotate(List[Tuple[Tensor, Tensor]], [])
output = input
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for rnn_layer in self.layers:
state = states[i]
output, out_state = rnn_layer(output, state)
output_states += [out_state]
i += 1
return output, output_states
# Differs from StackedLSTM in that its forward method takes
# List[List[Tuple[Tensor,Tensor]]]. It would be nice to subclass StackedLSTM
# except we don't support overriding script methods.
# https://github.com/pytorch/pytorch/issues/10733
class StackedLSTM2(jit.ScriptModule):
__constants__ = ['layers'] # Necessary for iterating through self.layers
def __init__(self, num_layers, layer, first_layer_args, other_layer_args):
super(StackedLSTM2, self).__init__()
self.layers = init_stacked_lstm(num_layers, layer, first_layer_args,
other_layer_args)
@jit.script_method
def forward(self, input: Tensor, states: List[List[Tuple[Tensor, Tensor]]]) -> Tuple[Tensor, List[List[Tuple[Tensor, Tensor]]]]:
# List[List[LSTMState]]: The outer list is for layers,
# inner list is for directions.
output_states = jit.annotate(List[List[Tuple[Tensor, Tensor]]], [])
output = input
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for rnn_layer in self.layers:
state = states[i]
output, out_state = rnn_layer(output, state)
output_states += [out_state]
i += 1
return output, output_states
class StackedLSTMWithDropout(jit.ScriptModule):
# Necessary for iterating through self.layers and dropout support
__constants__ = ['layers', 'num_layers']
def __init__(self, num_layers, layer, first_layer_args, other_layer_args):
super(StackedLSTMWithDropout, self).__init__()
self.layers = init_stacked_lstm(num_layers, layer, first_layer_args,
other_layer_args)
# Introduces a Dropout layer on the outputs of each LSTM layer except
# the last layer, with dropout probability = 0.4.
self.num_layers = num_layers
if (num_layers == 1):
warnings.warn("dropout lstm adds dropout layers after all but last "
"recurrent layer, it expects num_layers greater than "
"1, but got num_layers = 1")
self.dropout_layer = nn.Dropout(0.4)
@jit.script_method
def forward(self, input: Tensor, states: List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]]:
# List[LSTMState]: One state per layer
output_states = jit.annotate(List[Tuple[Tensor, Tensor]], [])
output = input
# XXX: enumerate https://github.com/pytorch/pytorch/issues/14471
i = 0
for rnn_layer in self.layers:
state = states[i]
output, out_state = rnn_layer(output, state)
# Apply the dropout layer except the last layer
if i < self.num_layers - 1:
output = self.dropout_layer(output)
output_states += [out_state]
i += 1
return output, output_states
def flatten_states(states):
states = list(zip(*states))
assert len(states) == 2
return [torch.stack(state) for state in states]
def double_flatten_states(states):
# XXX: Can probably write this in a nicer way
states = flatten_states([flatten_states(inner) for inner in states])
return [hidden.view([-1] + list(hidden.shape[2:])) for hidden in states]
def test_script_rnn_layer(seq_len, batch, input_size, hidden_size):
inp = torch.randn(seq_len, batch, input_size)
state = LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
rnn = LSTMLayer(LSTMCell, input_size, hidden_size)
out, out_state = rnn(inp, state)
# Control: pytorch native LSTM
lstm = nn.LSTM(input_size, hidden_size, 1)
lstm_state = LSTMState(state.hx.unsqueeze(0), state.cx.unsqueeze(0))
for lstm_param, custom_param in zip(lstm.all_weights[0], rnn.parameters()):
assert lstm_param.shape == custom_param.shape
with torch.no_grad():
lstm_param.copy_(custom_param)
lstm_out, lstm_out_state = lstm(inp, lstm_state)
assert (out - lstm_out).abs().max() < 1e-5
assert (out_state[0] - lstm_out_state[0]).abs().max() < 1e-5
assert (out_state[1] - lstm_out_state[1]).abs().max() < 1e-5
def test_script_stacked_rnn(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(num_layers)]
rnn = script_lstm(input_size, hidden_size, num_layers)
out, out_state = rnn(inp, states)
custom_state = flatten_states(out_state)
# Control: pytorch native LSTM
lstm = nn.LSTM(input_size, hidden_size, num_layers)
lstm_state = flatten_states(states)
for layer in range(num_layers):
custom_params = list(rnn.parameters())[4 * layer: 4 * (layer + 1)]
for lstm_param, custom_param in zip(lstm.all_weights[layer],
custom_params):
assert lstm_param.shape == custom_param.shape
with torch.no_grad():
lstm_param.copy_(custom_param)
lstm_out, lstm_out_state = lstm(inp, lstm_state)
assert (out - lstm_out).abs().max() < 1e-5
assert (custom_state[0] - lstm_out_state[0]).abs().max() < 1e-5
assert (custom_state[1] - lstm_out_state[1]).abs().max() < 1e-5
def test_script_stacked_bidir_rnn(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [[LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(2)]
for _ in range(num_layers)]
rnn = script_lstm(input_size, hidden_size, num_layers, bidirectional=True)
out, out_state = rnn(inp, states)
custom_state = double_flatten_states(out_state)
# Control: pytorch native LSTM
lstm = nn.LSTM(input_size, hidden_size, num_layers, bidirectional=True)
lstm_state = double_flatten_states(states)
for layer in range(num_layers):
for direct in range(2):
index = 2 * layer + direct
custom_params = list(rnn.parameters())[4 * index: 4 * index + 4]
for lstm_param, custom_param in zip(lstm.all_weights[index],
custom_params):
assert lstm_param.shape == custom_param.shape
with torch.no_grad():
lstm_param.copy_(custom_param)
lstm_out, lstm_out_state = lstm(inp, lstm_state)
assert (out - lstm_out).abs().max() < 1e-5
assert (custom_state[0] - lstm_out_state[0]).abs().max() < 1e-5
assert (custom_state[1] - lstm_out_state[1]).abs().max() < 1e-5
def test_script_stacked_lstm_dropout(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(num_layers)]
rnn = script_lstm(input_size, hidden_size, num_layers, dropout=True)
# just a smoke test
out, out_state = rnn(inp, states)
def test_script_stacked_lnlstm(seq_len, batch, input_size, hidden_size,
num_layers):
inp = torch.randn(seq_len, batch, input_size)
states = [LSTMState(torch.randn(batch, hidden_size),
torch.randn(batch, hidden_size))
for _ in range(num_layers)]
rnn = script_lnlstm(input_size, hidden_size, num_layers)
# just a smoke test
out, out_state = rnn(inp, states)
test_script_rnn_layer(5, 2, 3, 7)
test_script_stacked_rnn(5, 2, 3, 7, 4)
test_script_stacked_bidir_rnn(5, 2, 3, 7, 4)
test_script_stacked_lstm_dropout(5, 2, 3, 7, 4)
test_script_stacked_lnlstm(5, 2, 3, 7, 4)