blob: 41758ec9f2f3784cc835fb7f1076d35663e15fd0 [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/runtime/static/ProcessedNodeInputs.h>
#include <torch/csrc/jit/runtime/static/fusion.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/runtime/static/memory_planner.h>
#include <torch/csrc/jit/runtime/static/ops.h>
#include <torch/csrc/jit/runtime/static/passes.h>
#include <memory>
#include "deep_wide_pt.h"
#include "test_utils.h"
using namespace torch;
using namespace torch::jit;
using namespace torch::jit::test;
C10_DECLARE_bool(static_runtime_disable_debug_memory_overlap_check);
namespace {
StaticModule makeStaticModuleFromScript(const std::string& script) {
Module m("module");
m.define(script);
return StaticModule(m);
}
bool testCanEnableStaticRuntime(const std::string& jit_script) {
script::Module module("module");
module.define(jit_script);
Method method = module.get_method("forward");
auto graph = module.get_method("forward").graph();
// here we do not freeze graph
return canEnableStaticRuntime(graph);
}
bool testModuleHasOp(const std::string& jit_script, const char* op_name) {
script::Module module("module");
module.define(jit_script);
return forwardHasOp(module, op_name);
}
const auto reshape_inplace_script = R"JIT(
def forward(self, inp: Tensor, shape: List[int]):
a = inp + inp
b = a.reshape(shape)
c = b.sigmoid_()
d = c + c
e = a + a
f = b + b
return (d, e, f)
)JIT";
const auto reshape_inplace_script_1 = R"JIT(
def forward(self, inp: Tensor, shape: List[int], flag: bool):
if flag:
a = inp + inp
b = a.reshape(shape)
c = b.sigmoid()
else:
a = inp * inp
b = a.sigmoid_()
c = b.reshape(shape)
d = c + c
e = a + a
f = b + b
return (d, e, f)
)JIT";
const auto sigmoid_inplace_script = R"JIT(
def forward(self, inp: Tensor):
a = torch.sigmoid(inp, out=inp).clone()
return (a)
)JIT";
const auto sigmoid_out_script = R"JIT(
def forward(self, inp: Tensor):
a = inp + inp
b = torch.sigmoid(inp, out=a).clone()
return (b)
)JIT";
} // namespace
// Test that StaticModule::value_group groups values of the graph into
// 1) Inputs/Constants and their aliases 2) Outputs and their aliases.
TEST(StaticModule, ValueGroup) {
const std::string src = R"IR(
graph(%input0 : Tensor, %input1 : Tensor):
# Constants.
%0 : int = prim::Constant[value=1]()
# Internal values.
%1 : Tensor = aten::add(%input0, %input1, %0)
# This includes aliases of output.
%2 : Tensor = aten::add(%input0, %1, %0)
# This includes output.
%3 : (Tensor) = prim::TupleConstruct(%2)
return (%3)
)IR";
auto input_graph = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(src, input_graph.get());
torch::jit::StaticModule sm(input_graph);
const Graph& graph = sm.graph();
std::vector<const Node*> nodes(graph.nodes().begin(), graph.nodes().end());
auto* root_block = sm.root_block();
const auto& value_group = sm.block_info(root_block).value_group();
std::vector<const Value*> expected_input_aliases{
graph.inputs()[0], graph.inputs()[1], nodes[0]->output()};
for (auto* value : expected_input_aliases) {
EXPECT_TRUE(value_group.isExternalAlias(value));
}
std::vector<const Value*> expected_output_aliases{
graph.outputs()[0], nodes[2]->output()};
for (auto* value : expected_output_aliases) {
EXPECT_TRUE(value_group.isOutputAlias(value));
}
EXPECT_FALSE(value_group.isAlwaysAlive(nodes[1]->output()));
EXPECT_TRUE(value_group.isAlwaysAlive(graph.inputs()[0]));
EXPECT_TRUE(value_group.isAlwaysAlive(graph.inputs()[1]));
EXPECT_TRUE(value_group.isAlwaysAlive(graph.outputs()[0]));
}
TEST(StaticModule, IsOptimizableContainerType_NonOptimizableInputs) {
// Cannot use out variants for list/tuple construction here because
// inputs are not produced by nodes with out variants.
const std::string src = R"JIT(
def forward(self, a, b):
a_alias = a.view(a.size())
non_optimizable_list = [a_alias]
non_optimizable_tuple = (b, )
return non_optimizable_list, non_optimizable_tuple
)JIT";
auto sm = makeStaticModuleFromScript(src);
const auto& graph = sm.graph();
auto* root_block = sm.root_block();
const auto& block_info = sm.block_info(root_block);
for (const Node* n : graph.nodes()) {
EXPECT_FALSE(block_info.node_is_optimizable_container_type(n));
}
}
TEST(StaticModule, IsOptimizableContainerType_WrongType) {
// Cannot use out variants for list/tuple construction here because
// types are not Tensors
const std::string src = R"JIT(
def forward(self, x: int, y: int):
a = 1 + x
b = 2 + y
non_optimizable_list = [a]
non_optimizable_tuple = (b, )
return non_optimizable_list, non_optimizable_tuple
)JIT";
auto sm = makeStaticModuleFromScript(src);
const auto& graph = sm.graph();
auto* root_block = sm.root_block();
const auto& block_info = sm.block_info(root_block);
for (const Node* n : graph.nodes()) {
EXPECT_FALSE(block_info.node_is_optimizable_container_type(n));
}
}
TEST(StaticModule, IsOptimizableContainerType_CanUseOutVariant) {
// This container should be optimizable since aten::add has an
// out variant the container contains Tensors.
const std::string src = R"JIT(
def forward(self, x):
a = torch.relu(x)
optimizable_list = [a]
return optimizable_list
)JIT";
auto sm = makeStaticModuleFromScript(src);
const auto& graph = sm.graph();
auto* root_block = sm.root_block();
const auto& block_info = sm.block_info(root_block);
for (const Node* n : graph.nodes()) {
if (n->kind() == c10::prim::ListConstruct) {
EXPECT_TRUE(block_info.node_is_optimizable_container_type(n));
} else {
EXPECT_FALSE(block_info.node_is_optimizable_container_type(n));
}
}
}
// Test operator() with rvalue inputs
TEST(StaticModule, RValueInputs) {
const std::string src = R"JIT(
def forward(self, x):
y = torch.relu(x)
return y.clone()
)JIT";
auto sm = makeStaticModuleFromScript(src);
std::vector<IValue> input{at::randn({1})};
auto expected = sm(input, {});
auto actual = sm(std::move(input), {});
EXPECT_TRUE(expected.isTensor());
EXPECT_TRUE(actual.isTensor());
EXPECT_TRUE(expected.toTensor().equal(actual.toTensor()));
}
TEST(StaticRuntime, ModuleHasOp) {
EXPECT_TRUE(testModuleHasOp(reshape_inplace_script, "aten::sigmoid_"));
EXPECT_TRUE(testModuleHasOp(reshape_inplace_script_1, "aten::reshape"));
EXPECT_TRUE(testModuleHasOp(sigmoid_inplace_script, "aten::clone"));
EXPECT_FALSE(testModuleHasOp(reshape_inplace_script_1, "aten::add_"));
}
TEST(StaticRuntime, ReplaceWithCopy_replaces_reshape) {
auto ExpectToReplaceWithCopy = [](const std::string& jit_script) {
auto graph = getGraphFromScript(jit_script);
EXPECT_TRUE(graphHasOp(graph, "aten::reshape"));
EXPECT_FALSE(graphHasOp(graph, "static_runtime::reshape_copy"));
ReplaceWithCopy(graph);
// aten::reshape -> static_runtime::reshape_copy
EXPECT_FALSE(graphHasOp(graph, "aten::reshape"));
EXPECT_TRUE(graphHasOp(graph, "static_runtime::reshape_copy"));
};
ExpectToReplaceWithCopy(R"JIT(
def forward(self, inp: Tensor, shape: List[int]):
a = inp.reshape(shape)
return (a)
)JIT");
ExpectToReplaceWithCopy(R"JIT(
def forward(self, inp: Tensor, shape: List[int]):
a = inp * 2
b = inp * 3
c = inp.reshape(shape)
return (a, b, c)
)JIT");
ExpectToReplaceWithCopy(R"JIT(
def forward(self, cond: bool, x):
if cond:
y = x.reshape(x.shape)
else:
y = x.clone()
return y.clone()
)JIT");
}
TEST(
StaticRuntime,
ReplaceWithCopy_does_not_replace_reshape_if_input_has_writters) {
auto ExpectNotToReplaceWithCopy = [](const std::string& jit_script) {
auto graph = getGraphFromScript(jit_script);
EXPECT_TRUE(graphHasOp(graph, "aten::reshape"));
EXPECT_FALSE(graphHasOp(graph, "static_runtime::reshape_copy"));
ReplaceWithCopy(graph);
// No Replacement
EXPECT_TRUE(graphHasOp(graph, "aten::reshape"));
EXPECT_FALSE(graphHasOp(graph, "static_runtime::reshape_copy"));
};
ExpectNotToReplaceWithCopy(R"JIT(
def forward(self, inp: Tensor, shape: List[int]):
a = inp.reshape(shape)
inp *= 2
return (a)
)JIT");
ExpectNotToReplaceWithCopy(R"JIT(
def forward(self, inp: Tensor, shape: List[int]):
a = inp.reshape(shape)
a *= 2
return (a)
)JIT");
ExpectNotToReplaceWithCopy(R"JIT(
def forward(self, inp: Tensor, inp2: Tensor, shape: List[int]):
a = inp.reshape(shape)
a *= 2
b = a.reshape(shape)
return (b)
)JIT");
ExpectNotToReplaceWithCopy(R"JIT(
def forward(self, inp: Tensor, shape: List[int]):
a = inp.reshape(shape)
b = a.reshape(shape)
c = b.reshape(shape)
d = c.reshape(shape)
e = b.sigmoid_()
return (d)
)JIT");
ExpectNotToReplaceWithCopy(reshape_inplace_script);
}
TEST(StaticRuntime, CanEnableStaticRuntime) {
const auto while_script = R"JIT(
def forward(self, a: Tensor, x: int):
c = 0
while c < x:
a = a * a
c += 2
return a
)JIT";
const auto for_script = R"JIT(
def forward(self, a: Tensor, x: int):
for c in range(x):
a = a * a
return a
)JIT";
const auto if_script = R"JIT(
def forward(self, a: Tensor, b: bool):
if b:
return a
else:
return a * a
)JIT";
const auto is_script_tensors = R"JIT(
def forward(self, a: Tensor, b: Tensor):
return a is b
)JIT";
const auto is_script_none = R"JIT(
def forward(self, a: Optional[Tensor]):
return a is None
)JIT";
const auto is_not_script_tensors = R"JIT(
def forward(self, a: Tensor, b: Tensor):
return a is not b
)JIT";
const auto is_not_script_none = R"JIT(
def forward(self, a: Optional[Tensor]):
return a is not None
)JIT";
EXPECT_TRUE(testCanEnableStaticRuntime(reshape_inplace_script));
EXPECT_TRUE(testCanEnableStaticRuntime(for_script));
EXPECT_TRUE(testCanEnableStaticRuntime(while_script));
EXPECT_TRUE(testCanEnableStaticRuntime(if_script));
EXPECT_FALSE(testCanEnableStaticRuntime(is_script_tensors));
EXPECT_TRUE(testCanEnableStaticRuntime(is_script_none));
EXPECT_FALSE(testCanEnableStaticRuntime(is_not_script_tensors));
EXPECT_TRUE(testCanEnableStaticRuntime(is_not_script_none));
}
TEST(StaticRuntime, NestedOutput) {
// dict of tuple of list
const auto nested_output_script_0 = R"JIT(
def forward(self, a, b):
c = (a + b).relu().nan_to_num().float()
d = a.flatten().nan_to_num() * b.flatten().nan_to_num()
e = d.float().relu()
f = ([c], [d])
g = ([e], [f])
return ({"prediction":(f, g)})
)JIT";
// tuple of lists
const auto nested_output_script_1 = R"JIT(
def forward(self, a, b):
c = (a + b).relu().nan_to_num().float()
d = a.flatten().nan_to_num() * b.flatten().nan_to_num()
e = d.float().relu()
f = [c]
g = [e]
return (f, g)
)JIT";
// list of tuple of dict
const auto nested_output_script_2 = R"JIT(
def forward(self, a, b):
c = (a + b).relu().nan_to_num().float()
d = b * c
e = a.flatten().nan_to_num() * b.flatten().nan_to_num()
f = e.float().relu()
g = ({"d": d}, {"b": b})
h = ({"e": e}, {"f": f})
return [g, h]
)JIT";
// lit of dict
const auto nested_output_script_3 = R"JIT(
def forward(self, a, b):
c = (a + b).relu().nan_to_num().float()
d = b * c
e = a.flatten().nan_to_num() * b.flatten().nan_to_num()
f = e.float().relu()
g = {"d": d, "b": b}
h = {"e": e, "f": f}
return [g, h]
)JIT";
auto run_test = [&](std::vector<int64_t> shapes) {
auto a = at::randn(shapes);
auto b = at::randn(shapes);
std::vector<IValue> args{a, b};
testStaticRuntime(nested_output_script_0, args);
testStaticRuntime(nested_output_script_1, args);
testStaticRuntime(nested_output_script_2, args);
testStaticRuntime(nested_output_script_3, args);
if (shapes.size() > 0 && shapes[0] != 0) {
shapes[0] *= 3;
testStaticRuntime(
nested_output_script_0, args, {at::randn(shapes), at::randn(shapes)});
testStaticRuntime(
nested_output_script_1, args, {at::randn(shapes), at::randn(shapes)});
}
};
run_test({2, 3, 1, 2});
run_test({2, 6});
}
// test memory reuse
TEST(StaticRuntime, LongModel) {
torch::jit::Module mod = getLongScriptModel();
auto a = torch::randn({2, 2});
auto b = torch::randn({2, 2});
auto c = torch::randn({2, 2});
// run jit graph executor
std::vector<at::IValue> input_ivalues({a, b, c});
at::Tensor output_1 = mod.forward(input_ivalues).toTensor();
// run static runtime
std::vector<c10::IValue> input_tensors({a, b, c});
torch::jit::StaticModule smod(mod);
at::Tensor output_2 = smod(input_tensors, {}).toTensor();
smod.runtime().check_for_memory_leak();
EXPECT_TRUE(
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
}
TEST(StaticRuntime, TrivialModel) {
torch::jit::Module mod = getTrivialScriptModel();
auto a = torch::randn({2, 2});
auto b = torch::randn({2, 2});
auto c = torch::randn({2, 2});
// run jit graph executor
std::vector<at::IValue> input_ivalues({a, b, c});
at::Tensor output_1 = mod.forward(input_ivalues).toTensor();
// run static runtime
std::vector<c10::IValue> input_tensors({a, b, c});
torch::jit::StaticModule smod(mod);
at::Tensor output_2 = smod(input_tensors, {}).toTensor();
smod.runtime().check_for_memory_leak();
EXPECT_TRUE(
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
}
TEST(StaticRuntime, DeepWide) {
const int embedding_size = 32;
const int num_features = 50;
torch::jit::Module mod = getDeepAndWideSciptModel();
torch::jit::StaticModule smod(mod);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
auto output_1 = getTensor(mod.forward(inputs));
// run static runtime
std::vector<c10::IValue> input_tensors({ad_emb_packed, user_emb, wide});
auto outputs = smod(input_tensors, {}).toTupleRef().elements();
ASSERT_TRUE(outputs.size() > 0);
at::Tensor output_2 = outputs[0].toTensor();
smod.runtime().check_for_memory_leak();
EXPECT_TRUE(
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
}
}
}
TEST(StaticRuntime, KWargsAPI_1) {
const int embedding_size = 32;
const int num_features = 50;
auto module = getDeepAndWideSciptModel();
torch::jit::StaticModule smod(module);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
{
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
// run jit graph executor
at::Tensor output_1 = getTensor(module.forward(inputs));
// run static runtime
c10::IValue output_ivalue = smod(inputs, {});
smod.runtime().check_for_memory_leak();
at::Tensor output_2 = getTensor(output_ivalue);
EXPECT_TRUE(
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
// check for output aliasing
EXPECT_EQ(output_ivalue.use_count(), 1);
output_ivalue = IValue();
EXPECT_EQ(output_2.getIntrusivePtr().use_count(), 1);
}
// check for input aliasing (deep & wide does not have ops
// that create aliases of input tensors)
EXPECT_EQ(ad_emb_packed.getIntrusivePtr().use_count(), 1);
EXPECT_EQ(user_emb.getIntrusivePtr().use_count(), 1);
EXPECT_EQ(wide.getIntrusivePtr().use_count(), 1);
}
}
}
TEST(StaticRuntime, KWargsAPI_2) {
const int embedding_size = 32;
const int num_features = 50;
auto module = getDeepAndWideSciptModel();
torch::jit::StaticModule smod(module);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
{
// run jit graph executor
std::vector<at::IValue> args({ad_emb_packed, user_emb, wide});
at::Tensor output_1 = getTensor(module.forward(args));
std::unordered_map<std::string, c10::IValue> kwargs(
{{"ad_emb_packed", ad_emb_packed},
{"user_emb", user_emb},
{"wide", wide}});
// run static runtime
c10::IValue output_ivalue = smod(std::vector<IValue>{}, kwargs);
smod.runtime().check_for_memory_leak();
at::Tensor output_2 = getTensor(output_ivalue);
EXPECT_TRUE(
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
// check for output aliasing
EXPECT_EQ(output_ivalue.use_count(), 1);
output_ivalue = IValue();
EXPECT_EQ(output_2.getIntrusivePtr().use_count(), 1);
}
EXPECT_EQ(ad_emb_packed.getIntrusivePtr().use_count(), 1);
EXPECT_EQ(user_emb.getIntrusivePtr().use_count(), 1);
EXPECT_EQ(wide.getIntrusivePtr().use_count(), 1);
}
}
}
TEST(StaticRuntime, KWargsAPI_Optional) {
const auto src = R"JIT(
def forward(self, x, y, z: Optional[Tensor] = None):
return x + y
)JIT";
torch::jit::Module mod("mod");
mod.define(src);
torch::jit::StaticModule smod(mod);
const auto kwargs = std::unordered_map<std::string, IValue>{
{"x", at::randn({1})}, {"y", at::randn({1})}};
auto expected = mod.forward({}, kwargs).toTensor();
auto actual = smod({}, kwargs).toTensor();
EXPECT_TRUE(expected.equal(actual));
}
TEST(StaticRuntime, CleanUpMemory) {
const int embedding_size = 32;
const int num_features = 50;
torch::jit::Module mod = getDeepAndWideSciptModel();
for (auto enable_out_variant : {true, false}) {
for (auto optimize_memory : {true, false}) {
for (auto manage_output_tensors : {true, false}) {
if (manage_output_tensors && !enable_out_variant) {
// when manage_output_tensors is enabled, enable_out_variant
// must be enabled too
continue;
}
if (optimize_memory && !enable_out_variant) {
// when optimize_memory is enabled, enable_out_variant must be
// enabled too
continue;
}
VLOG(1) << "enable_out_variant: " << enable_out_variant
<< ", optimize_memory: " << optimize_memory
<< ", manage_output_tensors: " << manage_output_tensors;
torch::jit::StaticModuleOptions opts{
enable_out_variant, optimize_memory, manage_output_tensors};
torch::jit::StaticModule smod(mod, false, opts);
torch::jit::StaticRuntime runtime(smod);
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
auto output_1 = getTensor(mod.forward(inputs));
// run static runtime
std::vector<c10::IValue> input_tensors(
{ad_emb_packed, user_emb, wide});
auto outputs = runtime(input_tensors, {}).toTupleRef().elements();
ASSERT_TRUE(outputs.size() > 0);
auto output_2 = outputs[0].toTensor();
runtime.check_for_memory_leak();
EXPECT_TRUE(torch::allclose(
output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
if (manage_output_tensors) {
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
}
}
}
}
}
}
TEST(StaticRuntime, ManageOutputTensors) {
const std::string test_graph = R"IR(
graph(%0 : Tensor):
# With manage_output_tensor enabled, this tensor is managed.
%1 : Tensor = aten::abs(%0)
# The output container object is never managed.
%2 : (Tensor) = prim::TupleConstruct(%1)
return (%2)
)IR";
auto a = at::randn({2, 2});
auto b = at::randn({3, 6});
std::vector<at::IValue> args{a};
std::vector<at::IValue> args2{b};
testStaticRuntime(test_graph, args);
testStaticRuntime(test_graph, args, args2);
}
TEST(
StaticRuntime,
ManageOutputTensorsReturnsOutputContainingManagedOutputTensor) {
const std::string test_graph = R"IR(
graph(%0 : Tensor):
# With manage_output_tensor enabled, this tensor is managed.
%1 : Tensor = aten::abs(%0)
# The output container object is never managed.
%2 : (Tensor) = prim::TupleConstruct(%1)
return (%2)
)IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(test_graph, g.get());
torch::jit::StaticModuleOptions opts{
/*enable_out_variant=*/true,
/*optimize_memory=*/true,
/*manage_output_tensors=*/true};
auto a = at::randn({2, 2});
std::vector<at::IValue> args{a};
torch::jit::StaticModule smod(g, opts);
torch::jit::StaticRuntime runtime(smod);
// Profile run.
{
IValue tuple = runtime(args, {});
ASSERT_TRUE(tuple.isTuple());
ASSERT_EQ(tuple.toTupleRef().elements().size(), 1);
// Do not manage intput value.
EXPECT_FALSE(runtime.isManagedOutputTensor(args[0]));
// Do not manage direct output value.
EXPECT_FALSE(runtime.isManagedOutputTensor(tuple));
IValue element = tuple.toTupleRef().elements()[0];
// Tensor to be managed, but not yet from the profile run.
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
tuple = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
// Second run that manages output tensors.
{
IValue tuple = runtime(args, {});
ASSERT_TRUE(tuple.isTuple());
ASSERT_EQ(tuple.toTupleRef().elements().size(), 1);
// Do not manage intput value.
EXPECT_FALSE(runtime.isManagedOutputTensor(args[0]));
// Do not manage direct output value.
EXPECT_FALSE(runtime.isManagedOutputTensor(tuple));
IValue element = tuple.toTupleRef().elements()[0];
// Tensor to be managed, but not yet from the profile run.
EXPECT_TRUE(runtime.isManagedOutputTensor(element));
tuple = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
}
TEST(StaticRuntime, ManageOutputTensorsWithDeallocateOutputTensors) {
const int embedding_size = 32;
const int num_features = 50;
torch::jit::Module mod = getDeepAndWideSciptModel();
torch::jit::StaticModuleOptions opts{
/*enable_out_variant=*/true,
/*optimize_memory=*/true,
/*manage_output_tensors=*/true};
torch::jit::StaticModule smod(mod, false, opts);
torch::jit::StaticRuntime runtime(smod);
// Reenter the runtime with the input with the same shape/different shapes.
for (int batch_size : {8, 8, 24, 8}) {
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
std::vector<c10::IValue> input_tensors({ad_emb_packed, user_emb, wide});
runtime(input_tensors, {});
runtime.check_for_memory_leak();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
}
TEST(StaticRuntime, ManageOutputTensorsWithoutDeallocateOutputTensors) {
const int embedding_size = 32;
const int num_features = 50;
torch::jit::Module mod = getDeepAndWideSciptModel();
torch::jit::StaticModuleOptions opts{
/*enable_out_variant=*/true,
/*optimize_memory=*/true,
/*manage_output_tensors=*/true};
torch::jit::StaticModule smod(mod, false, opts);
torch::jit::StaticRuntime runtime(smod);
int batch_size = 8;
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
std::vector<c10::IValue> input_tensors({ad_emb_packed, user_emb, wide});
// Profile run.
runtime(input_tensors, {});
runtime.deallocateOutputTensors();
// Run again to allocate output Tensors without deallocating them.
runtime(input_tensors, {});
// Memory leak checking fails.
EXPECT_THROW(runtime.checkOutputTensorMemoryLeaks(), std::exception);
// Calling the runtime without deallocation fails too.
EXPECT_THROW(runtime(input_tensors, {}), std::exception);
// After deallocation, everything works fine.
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
runtime(input_tensors, {});
}
TEST(StaticRuntime, DisableManageOutputTensors) {
const std::string test_graph = R"IR(
graph(%0 : Tensor):
# With manage_output_tensor enabled, this tensor is managed.
%1 : Tensor = aten::abs(%0)
# The output container object is never managed.
%2 : (Tensor) = prim::TupleConstruct(%1)
return (%2)
)IR";
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(test_graph, g.get());
torch::jit::StaticModuleOptions opts{
/*enable_out_variant=*/true,
/*optimize_memory=*/true,
/*manage_output_tensors=*/true};
auto a = at::randn({2, 2});
std::vector<at::IValue> args{a};
torch::jit::StaticModule smod(g, opts);
torch::jit::StaticRuntime runtime(smod);
// Profile run.
{
IValue tuple = runtime(args, {});
IValue element = tuple.toTupleRef().elements()[0];
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
tuple = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
// Second run that manages output tensors.
{
IValue tuple = runtime(args, {});
IValue element = tuple.toTupleRef().elements()[0];
EXPECT_TRUE(runtime.isManagedOutputTensor(element));
tuple = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
// Reset the runtime and start profiling again.
runtime.disableManageOutputTensors();
IValue copied_output_tensor;
IValue original_output_tensor;
// New profile run.
{
IValue tuple = runtime(args, {});
IValue element = tuple.toTupleRef().elements()[0];
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
copied_output_tensor = element.deepcopy();
original_output_tensor = element;
tuple = IValue();
// No-op since manage_output_tensor is disabled now.
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
// Ensure that `original_output_tensor` is no longer managed: even after
// calling `runtime.deallocateOutputTensors();` `original_output_tensor` still
// contains a valid value.
EXPECT_TRUE(
original_output_tensor.toTensor().equal(copied_output_tensor.toTensor()));
// Ensure that the second optimized run does not manage the output tensor
// either.
{
IValue tuple = runtime(args, {});
IValue element = tuple.toTupleRef().elements()[0];
EXPECT_FALSE(runtime.isManagedOutputTensor(element));
copied_output_tensor = element.deepcopy();
original_output_tensor = element;
tuple = IValue();
// No-op since manage_output_tensor is disabled now.
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
// Ensure that `original_output_tensor` is no longer managed: even after
// calling `runtime.deallocateOutputTensors();` `original_output_tensor` still
// contains a valid value.
EXPECT_TRUE(
original_output_tensor.toTensor().equal(copied_output_tensor.toTensor()));
}
TEST(StaticRuntime, FusionPass) {
const int embedding_size = 32;
const int num_features = 50;
for (int batch_size : {1, 8, 32}) {
for (int i = 0; i < 2; ++i) {
torch::jit::Module module = getDeepAndWideSciptModel();
auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
auto user_emb = torch::randn({batch_size, 1, embedding_size});
auto wide = torch::randn({batch_size, num_features});
// run jit graph executor
std::vector<at::IValue> inputs({ad_emb_packed, user_emb, wide});
auto output_1 = getTensor(module.forward(inputs));
Method method = module.get_method("forward");
auto graph = method.graph();
fuseStaticSubgraphs(graph, 2);
bool hit = false;
for (const auto& n : module.get_method("forward").graph()->nodes()) {
if (n->kind() == torch::jit::prim::StaticSubgraph) {
hit = true;
}
}
EXPECT_TRUE(hit);
auto output_2 = getTensor(module.forward(inputs));
EXPECT_TRUE(
torch::allclose(output_1, output_2, /*rtol=*/1e-5, /*atol=*/1e-7));
}
}
}
static ProcessedNodeInputs createProcessedNodeInputs(
c10::ArrayRef<uint16_t> inputs) {
ProcessedNodeInputs result(inputs.size());
for (const auto idx : c10::irange(inputs.size())) {
result[idx] = inputs[idx];
}
return result;
}
TEST(
ProcessedNode,
VerifyNoMemoryOverlapWithImmutableInputsWithImmutableArguments) {
const auto sigmoid_script = R"JIT(
def forward(self, inp: Tensor):
b = torch.sigmoid(inp).clone()
return (b)
)JIT";
script::Module module("module");
// Not using out= variant.
module.define(sigmoid_script);
torch::jit::StaticModule smodule(module);
Node* sigmoid_node = getNodeWithKind(smodule, "aten::sigmoid");
std::array<IValue, 2> values = {torch::randn({2, 3}), torch::randn({3, 1})};
ProcessedFunction fn(
sigmoid_node,
/*enable_out_variant=*/true,
/*check_memory_overlap=*/false);
StaticNodeInfo static_node_info(
sigmoid_node, &fn, createProcessedNodeInputs({0}), 1);
ProcessedNode pnode(static_node_info, values.data());
EXPECT_TRUE(pnode.verify_no_memory_overlap(/* force_check*/ true));
pnode.Output(0) = values[0];
EXPECT_FALSE(pnode.verify_no_memory_overlap(/* force_check*/ true));
}
TEST(ProcessedNode, VerifyNoMemoryOverlapWithImmutableInputsWithInplaceOps) {
script::Module module("module");
// Using out= variant.
module.define(sigmoid_inplace_script);
torch::jit::StaticModule smodule(module);
Node* sigmoid_node = getNodeWithKind(smodule, "aten::sigmoid");
std::array<IValue, 2> values = {torch::randn({2, 3}), torch::randn({3, 1})};
ProcessedFunction fn(
sigmoid_node,
/*enable_out_variant=*/true,
/*check_memory_overlap=*/false);
StaticNodeInfo static_node_info(
sigmoid_node, &fn, createProcessedNodeInputs({0}), 1);
ProcessedNode pnode(static_node_info, values.data());
ASSERT_EQ(&pnode.Output(0), &values[1]);
EXPECT_TRUE(pnode.verify_no_memory_overlap());
pnode.Output(0) = values[0];
EXPECT_TRUE(pnode.verify_no_memory_overlap());
}
TEST(ProcessedNode, VerifyNoMemoryOverlapWithOverlappingOutputs) {
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(
R"IR(
graph(%0):
%1 : Tensor, %2 : Tensor = prim::ListUnpack(%0)
return (%1, %2))IR",
g.get());
torch::jit::StaticModule smodule(g);
Node* list_unpack_node = getNodeWithKind(smodule, "prim::ListUnpack");
{
std::array<IValue, 3> values = {
at::randn({2, 3}), at::empty({1, 3}), at::empty({4, 5})};
ProcessedFunction fn(
list_unpack_node,
/*enable_out_variant=*/true,
/*check_memory_overlap */ false);
StaticNodeInfo list_unpack_static_node_info(
list_unpack_node, &fn, createProcessedNodeInputs({0}), 1);
ProcessedNode list_unpack_pnode(
list_unpack_static_node_info, values.data());
ASSERT_EQ(list_unpack_pnode.outputs().size(), 2);
EXPECT_TRUE(
list_unpack_pnode.verify_no_memory_overlap(/* force_check*/ true));
}
{
std::array<IValue, 3> values = {
at::randn({2, 3}), at::empty({1, 3}), at::empty({4, 5})};
ProcessedFunction fn(
list_unpack_node,
/*enable_out_variant=*/true,
/*check_memory_overlap */ false);
StaticNodeInfo list_unpack_static_node_info(
list_unpack_node, &fn, createProcessedNodeInputs({0}), 1);
ProcessedNode list_unpack_pnode(
list_unpack_static_node_info, values.data());
auto b = at::randn({2, 3});
list_unpack_pnode.Output(0) = b;
list_unpack_pnode.Output(1) = b;
EXPECT_FALSE(
list_unpack_pnode.verify_no_memory_overlap(/* force_check*/ true));
}
}
namespace test {
at::Tensor bad_add(const at::Tensor& self, int64_t b) {
if (b == 0) {
return self;
}
return at::native::add(self, b);
}
at::Tensor good_add(const at::Tensor& self, int64_t b) {
if (b == 0) {
return self;
}
return at::native::add(self, b);
}
} // namespace test
// test::bad_add has the schema with incorrect alias annotation.
// test::good_add has the correct alias annotation.
TORCH_LIBRARY_FRAGMENT(test, m) {
m.def("bad_add(Tensor self, int b=0) -> Tensor");
m.def("good_add(Tensor(a) self, int b=0) -> Tensor(a)");
}
TORCH_LIBRARY_IMPL(test, CPU, m) {
m.impl("bad_add", ::test::bad_add);
m.impl("good_add", ::test::good_add);
}
TEST(StaticRuntime, BadSchemaAliasInfo) {
FLAGS_static_runtime_disable_debug_memory_overlap_check = true;
const std::string src = R"IR(
graph(%x: Tensor, %s: int):
%c0 : int = prim::Constant[value=0]()
%c1 : int = prim::Constant[value=1]()
%a = aten::add(%x, %x, %c1)
%b1 = test::bad_add(%a, %s) # b1 aliases a
%t : (Tensor) = prim::TupleConstruct(%b1)
return (%t)
)IR";
const auto x1 = at::randn({2, 2});
// big enough to trigger resize of the internal buffer
const auto x2 = at::randn({3, 6});
testStaticRuntime(src, {x1, 0}, {x2, 10});
// This test doesn't pass yet. This is the corner case mentioned in Step 2 of
// [Check and correct bad schema alias info at runtime]
// testStaticRuntime(src, {x1, 10}, {x2, 0});
FLAGS_static_runtime_disable_debug_memory_overlap_check = false;
}
// This test repeats the last test, but with the correct schema alias
// annotations
TEST(StaticRuntime, GoodSchemaAliasInfo) {
// comment out the prim::TupleConstruct repro the failure of
// DCHECK(!isManagedOutputTensor(*outputs_[0]));
const std::string src = R"IR(
graph(%x: Tensor, %s: int):
%c0 : int = prim::Constant[value=0]()
%c1 : int = prim::Constant[value=1]()
%a = aten::add(%x, %x, %c1)
%b1 = test::good_add(%a, %s) # b1 aliases a
# return (%b1)
%t : (Tensor) = prim::TupleConstruct(%b1)
return (%t)
)IR";
const auto x1 = at::randn({2, 2});
// big enough to trigger resize of the internal buffer
const auto x2 = at::randn({3, 6});
testStaticRuntime(src, {x1, 0}, {x2, 10});
testStaticRuntime(src, {x1, 10}, {x2, 0});
}
TEST(ProcessedFunction, ProcessedFunction) {
const auto script = R"JIT(
def forward(self, inp: Tensor):
b = torch.sigmoid(inp).clone()
c = torch.transpose(b, 0, 1)
return (c)
)JIT";
script::Module module("module");
module.define(script);
torch::jit::StaticModule smodule(module);
Node* sigmoid_node = getNodeWithKind(smodule, "aten::sigmoid");
ProcessedFunction sigmoid_fn(
sigmoid_node,
/*enable_out_variant=*/true,
/*check_memory_overlap=*/false);
EXPECT_EQ(sigmoid_fn.kind(), ProcessedFunction::Kind::kOutVariant);
EXPECT_FALSE(sigmoid_fn.checkMemoryOverlap());
Node* transpose_node = getNodeWithKind(smodule, "aten::transpose");
ProcessedFunction transpose_fn(
transpose_node,
/*enable_out_variant=*/true,
/*check_memory_overlap=*/false);
EXPECT_EQ(transpose_fn.kind(), ProcessedFunction::Kind::kNativeFunction);
EXPECT_FALSE(transpose_fn.checkMemoryOverlap());
}
TEST(ManagedTensorRanges, NoAliases) {
const std::string src = R"IR(
graph(%x : Tensor):
%y : Tensor = aten::mul(%x, %x)
%z : Tensor = aten::mul(%y, %x)
%output : Tensor = aten::mul(%z, %z)
return (%output)
)IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(src, graph.get(), vmap);
auto* y = vmap["y"];
auto* z = vmap["z"];
FastSet<const Value*> managed_tensors = {y, z};
AliasDb alias_db(graph);
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, managed_tensors);
std::vector<Node*> nodes(
graph->block()->nodes().begin(), graph->block()->nodes().end());
ASSERT_EQ(nodes.size(), 3);
EXPECT_FALSE(ranges.nodeFreesManagedTensors(nodes[0]));
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[1]));
EXPECT_EQ(
ranges.availableTensorValuesAfterNode(nodes[1]),
std::vector<const Value*>{y});
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[2]));
EXPECT_EQ(
ranges.availableTensorValuesAfterNode(nodes[2]),
std::vector<const Value*>{z});
}
TEST(ManagedTensorRanges, AliasExtendingLifetimes) {
const std::string src = R"IR(
graph(%x : Tensor):
%y : Tensor = aten::mul(%x, %x)
%y_size : int[] = aten::size(%y)
%z1 : Tensor = aten::mul(%y, %y)
%y_alias : Tensor = aten::view(%y, %y_size)
%z2 : Tensor = aten::mul(%y_alias, %y_alias)
%output : Tensor = aten::mul(%z1, %z2)
return (%output)
)IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(src, graph.get(), vmap);
auto* y = vmap["y"];
auto* z1 = vmap["z1"];
auto* z2 = vmap["z2"];
FastSet<const Value*> managed_tensors = {y, z1, z2};
AliasDb alias_db(graph);
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, managed_tensors);
std::vector<Node*> nodes(
graph->block()->nodes().begin(), graph->block()->nodes().end());
ASSERT_EQ(nodes.size(), 6);
for (const auto i : c10::irange(4)) {
EXPECT_FALSE(ranges.nodeFreesManagedTensors(nodes[i]));
}
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[4]));
EXPECT_EQ(
ranges.availableTensorValuesAfterNode(nodes[4]),
std::vector<const Value*>{y});
EXPECT_TRUE(ranges.nodeFreesManagedTensors(nodes[5]));
const auto& available_after_5 =
ranges.availableTensorValuesAfterNode(nodes[5]);
// We don't care about the order, so convert to set. But make sure
// there are no duplicates.
FastSet<const Value*> available_after_5_set(
available_after_5.begin(), available_after_5.end());
EXPECT_EQ(available_after_5_set.size(), available_after_5.size());
EXPECT_EQ(available_after_5_set, FastSet<const Value*>({z1, z2}));
}
TEST(ManagedTensorRanges, LifetimeOverlap) {
const std::string src = R"IR(
graph(%a : Tensor):
%b : Tensor = aten::mul(%a, %a)
%c : Tensor = aten::mul(%b, %b)
%c_size : int[] = aten::size(%c)
%c_alias : Tensor = aten::view(%c, %c_size)
%d : Tensor = aten::mul(%a, %a)
%e : Tensor = aten::mul(%c_alias, %c_alias)
%output : Tensor = aten::mul(%e, %e)
return (%output)
)IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(src, graph.get(), vmap);
auto* b = vmap["b"];
auto* c = vmap["c"];
auto* d = vmap["d"];
auto* e = vmap["e"];
AliasDb alias_db(graph);
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, {b, c, d, e});
const std::vector<std::pair<Value*, Value*>> overlapping_values{
{b, c}, {c, d}, {c, e}};
const std::vector<std::pair<Value*, Value*>> disjoint_values{{b, d}, {b, e}};
for (const auto& values : overlapping_values) {
EXPECT_TRUE(ranges.lifetimesOverlap(values.first, values.second));
EXPECT_TRUE(ranges.lifetimesOverlap(values.second, values.first));
}
for (const auto& values : disjoint_values) {
EXPECT_FALSE(ranges.lifetimesOverlap(values.first, values.second));
EXPECT_FALSE(ranges.lifetimesOverlap(values.second, values.first));
}
}
TEST(ManagedTensorRanges, OverlappingLifetimesContainers) {
const std::string src = R"IR(
graph(%a : Tensor):
%b : Tensor = aten::mul(%a, %a)
%c : Tensor = aten::mul(%b, %b)
%tuple : (Tensor, Tensor) = prim::TupleConstruct(%b, %c)
%b_alias : Tensor, %c_alias : Tensor = prim::TupleUnpack(%tuple)
%d : Tensor = aten::mul(%b_alias, %c_alias)
%output : Tensor = aten::mul(%d, %d)
return (%output)
)IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(src, graph.get(), vmap);
auto* b = vmap["b"];
auto* c = vmap["c"];
auto* d = vmap["d"];
AliasDb alias_db(graph);
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, {b, c, d});
EXPECT_TRUE(ranges.lifetimesOverlap(b, c));
EXPECT_TRUE(ranges.lifetimesOverlap(b, d));
EXPECT_TRUE(ranges.lifetimesOverlap(c, d));
}
TEST(ManagedTensorRanges, OverlappingLifetimesOutputs) {
const std::string src = R"IR(
graph(%a : Tensor):
%output : Tensor = aten::mul(%a, %a)
%b : Tensor = aten::mul(%a, %a)
return (%output)
)IR";
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(src, graph.get(), vmap);
auto* b = vmap["b"];
auto* output = vmap["output"];
AliasDb alias_db(graph);
auto ranges = ManagedTensorRanges(*graph->block(), alias_db, {b, output});
EXPECT_TRUE(ranges.lifetimesOverlap(b, output));
}
namespace {
// For checking the correctness of assignStorageToManageTensors, the following
// conditions must hold
// 1. All managed tensors are assigned to some storage group, and a tensor
// may not be assigned to more than 1 storage group.
// 2. Managed tensors with overlapping lifetimes should not be in the same
// storage group.
// 3. The number of reused tensors is >= min_reused_tensors.
void checkStorageGroups(
const std::vector<StorageGroup>& storage_groups,
const ManagedTensorRanges& ranges,
const FastMap<const Value*, at::Tensor*>& tensor_value_to_tensor,
size_t min_reused_tensors) {
// Some extra bookkeeping; construct the set of managed Tensor* and
// invert the tensor_value_to_tensor map. StorageGroup stores
// Tensor*, so this will make everything a little easier.
FastMap<at::Tensor*, const Value*> tensor_to_tensor_value;
FastSet<at::Tensor*> managed_tensors;
for (auto& key_value : tensor_value_to_tensor) {
ASSERT_EQ(
tensor_to_tensor_value.find(key_value.second),
tensor_to_tensor_value.end());
tensor_to_tensor_value.emplace(key_value.second, key_value.first);
managed_tensors.insert(key_value.second);
}
// Condition (1)
FastSet<at::Tensor*> actual_assigned_tensors;
for (const auto& storage_group : storage_groups) {
for (auto* tensor : storage_group.group()) {
ASSERT_EQ(
actual_assigned_tensors.find(tensor), actual_assigned_tensors.end());
actual_assigned_tensors.insert(tensor);
}
}
ASSERT_EQ(actual_assigned_tensors, managed_tensors);
// Condition (2)
size_t num_reused = 0;
for (const auto& storage_group : storage_groups) {
const auto& group = storage_group.group();
num_reused += group.size() - 1;
for (const auto i : c10::irange(group.size() - 1)) {
for (const auto j : c10::irange(i + 1, group.size())) {
const auto* v1 = tensor_to_tensor_value.at(group[i]);
const auto* v2 = tensor_to_tensor_value.at(group[j]);
EXPECT_FALSE(ranges.lifetimesOverlap(v1, v2));
}
}
}
// Condition (3)
EXPECT_GE(num_reused, min_reused_tensors);
}
// A convenience function for testing assignStorageToManagedTensors. It
// takes in an IR graph as well as a map from managed tensor name to tensor
// value. It constructs all of the necessary data structures, invokes
// assignStorageToManageTensors, and verifies correctness with
// checkStorageGroups.
void testAssignStorageToManagedTensors(
const std::string& src,
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor,
size_t min_reused_tensors) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(src, graph.get(), vmap);
FastSet<const Value*> managed_tensor_values;
FastMap<const Value*, at::Tensor*> tensor_value_to_tensor;
for (auto& key_value : managed_tensor_name_to_tensor) {
const auto& tensor_name = key_value.first;
auto vmap_it = vmap.find(tensor_name);
ASSERT_TRUE(vmap_it != vmap.end());
managed_tensor_values.insert(vmap_it->second);
tensor_value_to_tensor.emplace(vmap_it->second, &key_value.second);
}
ASSERT_EQ(managed_tensor_values.size(), tensor_value_to_tensor.size());
AliasDb alias_db(graph);
auto ranges =
ManagedTensorRanges(*graph->block(), alias_db, managed_tensor_values);
auto groups = assignStorageToManagedTensors(
graph->block()->nodes(), ranges, tensor_value_to_tensor);
checkStorageGroups(
groups, ranges, tensor_value_to_tensor, min_reused_tensors);
}
} // namespace
TEST(AssignStorageToManagedTensors, NoAliases) {
const auto src = R"IR(
graph(%a : Tensor):
%b : Tensor = aten::mul(%a, %a)
%c : Tensor = aten::mul(%b, %b)
%d : Tensor = aten::mul(%c, %c)
%e : Tensor = aten::mul(%b, %d)
%output : Tensor = aten::mul(%e, %e)
return (%output)
)IR";
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor{
{"b", at::randn({1})},
{"c", at::randn({1})},
{"d", at::randn({1})},
{"e", at::randn({1})}};
const size_t min_reused_tensors = 1;
testAssignStorageToManagedTensors(
src, std::move(managed_tensor_name_to_tensor), min_reused_tensors);
}
TEST(AssignStorageToManagedTensors, Aliases) {
const auto src = R"IR(
graph(%a : Tensor):
%b : Tensor = aten::mul(%a, %a)
%c : Tensor = aten::mul(%b, %b)
%d : Tensor = aten::mul(%c, %c)
%c_size : int[] = aten::size(%c)
%c_alias : Tensor = aten::view(%c, %c_size)
%e : Tensor = aten::mul(%b, %d)
%f : Tensor = aten::mul(%c_alias, %c_alias)
%output : Tensor = aten::mul(%e, %f)
return (%output)
)IR";
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor{
{"b", at::randn({1})},
{"c", at::randn({1})},
{"d", at::randn({1})},
{"e", at::randn({1})},
{"f", at::randn({1})}};
const size_t min_reused_tensors = 1;
testAssignStorageToManagedTensors(
src, std::move(managed_tensor_name_to_tensor), min_reused_tensors);
}
namespace {
TORCH_LIBRARY_FRAGMENT(static_runtime_tests, m) {
m.def(torch::schema(
"static_runtime_tests::variadic_outputs(Tensor a) -> ...",
at::AliasAnalysisKind::PURE_FUNCTION));
}
} // namespace
TEST(AssignStorageToManagedTensors, MultipleUnused) {
const auto src = R"IR(
graph(%a : Tensor):
%z : Tensor = aten::mul(%a, %a)
%out: Tensor = aten::mul(%z, %z)
%x : Tensor, %y : Tensor = static_runtime_tests::variadic_outputs(%a)
return (%out)
)IR";
FastMap<std::string, at::Tensor> managed_tensor_name_to_tensor{
{"z", at::randn({1})}, {"x", at::randn({1})}, {"y", at::randn({1})}};
const size_t min_reused_tensors = 1;
testAssignStorageToManagedTensors(
src, std::move(managed_tensor_name_to_tensor), min_reused_tensors);
}
namespace {
void testStaticModuleThrows(
const std::string& src,
const std::vector<IValue>& args,
const std::unordered_map<std::string, IValue>& kwargs) {
auto static_module = makeStaticModuleFromScript(src);
EXPECT_THROW(static_module(args, kwargs), c10::Error);
}
} // namespace
TEST(StaticModule, IncorrectTypesPassed) {
const std::string args_bool_script = R"JIT(
def forward(self, x: bool):
return x
)JIT";
testStaticModuleThrows(args_bool_script, {at::randn({1})}, {});
const std::string args_tensor_script = R"JIT(
def forward(self, x: Tensor):
return x
)JIT";
testStaticModuleThrows(args_tensor_script, {false}, {});
const std::string kwargs_int_script = R"JIT(
def forward(self, x: bool = True):
return x
)JIT";
testStaticModuleThrows(kwargs_int_script, {}, {{"x", at::randn({1})}});
const std::string kwargs_tensor_script = R"JIT(
def forward(self, x: Tensor = torch.randn((1, ))):
return x
)JIT";
testStaticModuleThrows(kwargs_tensor_script, {}, {{"x", 1.0}});
}
TEST(StaticModule, TooManyArgs) {
const std::string args_src = R"JIT(
def forward(self, x: int):
return x
)JIT";
testStaticModuleThrows(args_src, {0, 1}, {});
const std::string kwargs_src = R"JIT(
def forward(self, x: int = 1):
return x
)JIT";
testStaticModuleThrows(kwargs_src, {}, {{"y", 0}, {"x", 1}});
}
TEST(StaticModule, NotEnoughArgs) {
const std::string args_src = R"JIT(
def forward(self, x: int):
return x
)JIT";
testStaticModuleThrows(args_src, {}, {});
const std::string kwargs_src = R"JIT(
def forward(self, *, x: int):
return x
)JIT";
testStaticModuleThrows(kwargs_src, {}, {});
}
TEST(CreateOwnedRefsForSpecialValues, TopLevel) {
const auto src = R"IR(
graph():
%c: int = prim::Constant[value=42]()
return (%c)
)IR";
auto graph = getGraphFromIR(src);
CreateOwnedRefsForSpecialValues(*graph);
EXPECT_TRUE(hasNodeWithKind(graph, "static_runtime::create_owned_ref"));
}
TEST(CreateOwnedRefsForSpecialValues, ValueFromOuterScope) {
const auto src = R"IR(
graph(%cond: bool, %1: int):
%c: int = aten::add(%1, %1)
%x: int = prim::If(%c)
block0():
-> (%c)
block1():
-> (%c)
return (%x)
)IR";
auto graph = getGraphFromIR(src);
CreateOwnedRefsForSpecialValues(*graph);
EXPECT_TRUE(hasNodeWithKind(graph, "static_runtime::create_owned_ref"));
}
TEST(ForceNonEmptyOutputs, TwoSubBlocks) {
const auto src = R"IR(
graph(%cond: bool):
%lst : int[] = prim::ListConstruct()
%1 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=2]()
prim::If(%cond)
block0():
aten::append(%lst, %1)
-> ()
block1():
aten::append(%lst, %2)
-> ()
return (%lst)
)IR";
auto graph = getGraphFromIR(src);
ForceNonEmptyOutputs(*graph);
for (auto* node : graph->nodes()) {
if (node->blocks().empty()) {
continue;
}
EXPECT_EQ(node->outputs().size(), 1);
for (auto* sub_block : node->blocks()) {
EXPECT_EQ(sub_block->outputs().size(), 1);
}
}
}
TEST(EliminateExtraPermuteOps, FusesSumCorrectly) {
const auto src = R"JIT(
def forward(self, x):
y = torch.permute(x, (0, 2, 1))
z = torch.sum(y, dim=-1)
return z
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
// turn the ListConstruct(%constant) into proper constant lists
ConstantPropagation(graph);
EliminateExtraPermuteOps(graph);
EXPECT_FALSE(hasNodeWithKind(graph, "aten::permute"));
auto* sum = getNodeWithKind(graph, "aten::sum");
ASSERT_NE(sum, nullptr);
auto dim = toIValue(sum->input(1));
ASSERT_TRUE(dim.has_value() && dim->isIntList());
EXPECT_EQ(dim->toIntList(), c10::List<int64_t>{1});
}
TEST(EliminateExtraPermuteOps, DoesNotFuseSumWrongDim) {
const auto src = R"JIT(
def forward(self, x):
y = torch.permute(x, (0, 2, 1))
z = torch.sum(y, dim=1)
return z
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
// turn the ListConstruct(%constant) into proper constant lists
ConstantPropagation(graph);
EliminateExtraPermuteOps(graph);
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
}
TEST(EliminateExtraPermuteOps, DoesNotFuseSumNonConstantDim) {
const auto src = R"JIT(
def forward(self, x, dim: int):
y = torch.permute(x, (0, 2, 1))
z = torch.sum(y, dim=dim)
return z
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
// turn the ListConstruct(%constant) into proper constant lists
ConstantPropagation(graph);
EliminateExtraPermuteOps(graph);
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
}
TEST(EliminateExtraPermuteOps, FusesSoftmaxCorrectly) {
const auto src = R"JIT(
def forward(self, x):
a = torch.permute(x, [0, 2, 1])
b = torch.softmax(a, 2)
c = torch.permute(b, [0, 2, 1])
return c.clone()
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
ConstantPropagation(graph);
EliminateExtraPermuteOps(graph);
graph->dump();
EXPECT_FALSE(hasNodeWithKind(graph, "aten::permute"));
auto* softmax = getNodeWithKind(graph, "aten::softmax");
ASSERT_NE(softmax, nullptr);
auto dim = toIValue(softmax->input(1));
ASSERT_TRUE(dim.has_value() && dim->isInt());
EXPECT_EQ(dim->toInt(), 1);
std::vector<IValue> args{at::randn({3, 4, 5})};
testStaticRuntime(src, args, /*args2=*/{}, /*use_allclose=*/true);
}
TEST(EliminateExtraPermuteOps, DoesNotFuseSoftmaxWrongPermuteDim) {
const auto src = R"JIT(
def forward(self, x):
a = torch.permute(x, [0, 1, 2])
b = torch.softmax(a, 2)
c = torch.permute(b, [0, 1, 2])
return c.clone()
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
ConstantPropagation(graph);
EliminateExtraPermuteOps(graph);
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
}
TEST(EliminateExtraPermuteOps, DoesNotFuseSoftmaxWrongSoftmaxDim) {
const auto src = R"JIT(
def forward(self, x):
a = torch.permute(x, [0, 2, 1])
b = torch.softmax(a, 0)
c = torch.permute(b, [0, 2, 1])
return c.clone()
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
ConstantPropagation(graph);
EliminateExtraPermuteOps(graph);
EXPECT_TRUE(hasNodeWithKind(graph, "aten::permute"));
}
TEST(UseSplitAndSqueeze, Fusion) {
const auto src = R"IR(
graph(%x: Tensor):
%dim: int = prim::Constant[value=1]()
%split_size: int = prim::Constant[value=1]()
%split: Tensor[] = aten::split(%x, %split_size, %dim)
%a: Tensor, %b: Tensor = prim::ListUnpack(%split)
%c: Tensor = aten::squeeze(%a, %dim)
%d: Tensor = aten::squeeze(%b, %dim)
return (%c, %d)
)IR";
auto graph = getGraphFromIR(src);
UseSplitAndSqueeze(graph);
EXPECT_TRUE(
hasNodeWithKind(graph, "static_runtime::fused_split_and_squeeze_copy"));
EXPECT_FALSE(hasNodeWithKind(graph, "aten::split"));
EXPECT_FALSE(hasNodeWithKind(graph, "aten::squeeze"));
EXPECT_FALSE(hasNodeWithKind(graph, "prim::ListUnpack"));
}
TEST(EliminateNoOpSlice, IntegerStart) {
const auto src = R"JIT(
def forward(self, x: List[int]) -> List[int]:
return x[0:]
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
EXPECT_TRUE(hasNodeWithKind(graph, "aten::slice"));
EliminateNoOpSlice(graph);
EXPECT_FALSE(hasNodeWithKind(graph, "aten::slice"));
}
TEST(EliminateNoOpSlice, NoneStart) {
const auto src = R"JIT(
def forward(self, x: List[int]) -> List[int]:
return x[:]
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
EliminateNoOpSlice(graph);
EXPECT_FALSE(hasNodeWithKind(graph, "aten::slice"));
}
#ifdef FBCODE_CAFFE2
// FuseClampNaNToNum pass is disabled externally to avoid MSVC errors in CI
TEST(FuseClampNaNToNum, FusionHappens) {
const auto src = R"JIT(
def forward(self, x):
y = torch.clamp(x, min=0.0, max=1.0)
z = y.nan_to_num()
return z.clone()
)JIT";
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
FuseClampNaNToNum(graph);
EXPECT_FALSE(hasNodeWithKind(graph, "aten::clamp"));
EXPECT_FALSE(hasNodeWithKind(graph, "aten::nan_to_num"));
EXPECT_TRUE(hasNodeWithKind(graph, "static_runtime::clamp_nan_to_num"));
// Correctness of the op is exercised in StaticRuntime.clamp_nan_to_num
}
TEST(FuseClampNaNToNum, NoFusion) {
const auto src1 = R"JIT(
def forward(self, x, a: float, b: float):
y = torch.clamp(x, a, b)
z = y.nan_to_num()
return z.clone()
)JIT";
const auto src2 = R"JIT(
def forward(self, x):
y = torch.clamp(x, min=0.0)
z = y.nan_to_num()
return z.clone()
)JIT";
const auto src3 = R"JIT(
def forward(self, x):
y = torch.clamp(x, max=0.0)
z = y.nan_to_num()
return z.clone()
)JIT";
const auto src4 = R"JIT(
def forward(self, x):
y = torch.clamp(x)
z = y.nan_to_num()
return z.clone()
)JIT";
auto checkScript = [](const char* src) {
torch::jit::Module mod("m");
mod.define(src);
auto graph = mod.get_method("forward").graph();
FuseClampNaNToNum(graph);
EXPECT_TRUE(hasNodeWithKind(graph, "aten::clamp"));
EXPECT_TRUE(hasNodeWithKind(graph, "aten::nan_to_num"));
EXPECT_FALSE(hasNodeWithKind(graph, "static_runtime::clamp_nan_to_num"));
};
checkScript(src1);
checkScript(src2);
checkScript(src3);
checkScript(src4);
}
#endif