| import torch._C |
| |
| import contextlib |
| import ctypes |
| import sys |
| import types |
| |
| import torch.jit |
| from torch import _utils_internal |
| |
| # Query `hasattr` only once. |
| _SET_GLOBAL_FLAGS = hasattr(sys, 'getdlopenflags') and hasattr(sys, 'setdlopenflags') |
| |
| |
| @contextlib.contextmanager |
| def dl_open_guard(): |
| """ |
| Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a |
| shared library to load custom operators. |
| """ |
| if _SET_GLOBAL_FLAGS: |
| old_flags = sys.getdlopenflags() |
| sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL) |
| yield |
| if _SET_GLOBAL_FLAGS: |
| sys.setdlopenflags(old_flags) |
| |
| # Each OpOverload object contains pointer to a a specific operator overload, a pointer to the parent `OpOverloadPacket` object. |
| # You can obtain an OpOverload object through attribute query on OpOverloadPacket. |
| class OpOverload: |
| def __init__(self, overloadpacket, op, schema, tags): |
| self._op = op |
| self._schema = schema |
| self._overloadpacket = overloadpacket |
| self._tags = tags |
| self._overloadname = 'default' if schema.overload_name == '' else schema.overload_name |
| self.__name__ = "{}.{}".format(self._schema.name.split("::")[1], self._overloadname) |
| self.__module__ = overloadpacket.__module__ |
| op.__module__ = overloadpacket.__module__ |
| |
| # it's a no-op since OpOverload object is immutable and must be unique for a given op overload. |
| def __deepcopy__(self, memo=None): |
| return self |
| |
| def __repr__(self): |
| return "<OpOverload(op='{}.{}', overload='{}')>".format(*self._schema.name.split("::"), self._overloadname) |
| |
| def __call__(self, *args, **kwargs): |
| return self._op(*args, **kwargs or {}) |
| |
| def __getattr__(self, key): |
| return getattr(self._op, key) |
| |
| def __hash__(self): |
| return hash(self._op) |
| |
| # `my_namespace.my_op_name.overload_name` |
| def __str__(self): |
| return "{}.{}.{}".format(*self._schema.name.split("::"), self._overloadname) |
| |
| @property |
| def overloadpacket(self): |
| return self._overloadpacket |
| |
| @property |
| def op(self): |
| return self._op |
| |
| @property |
| def tags(self): |
| return self._tags |
| |
| # TODO: add more methods to expose information about input and output arguments |
| |
| # OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator |
| # You can obtain an OpOverload object through attribute query. |
| class OpOverloadPacket: |
| def __init__(self, qualified_op_name, op_name, op, overload_names): |
| # These attributes are accessible on the object through the properties |
| # defined below but are immutable |
| self._qualified_op_name = qualified_op_name |
| self.__name__ = op_name |
| self._op = op |
| self._overload_names = overload_names |
| |
| # it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op. |
| def __deepcopy__(self, memo=None): |
| return self |
| |
| def __repr__(self): |
| return "<OpOverloadPacket(op='{}.{}')>".format(*self._qualified_op_name.split("::")) |
| |
| def __hash__(self): |
| return hash(self._op) |
| |
| def __str__(self): |
| return "{}.{}".format(*self._qualified_op_name.split("::")) |
| |
| @property |
| def op(self): |
| return self._op |
| |
| def __getattr__(self, key): |
| # It is not a valid op_name when __file__ is passed in |
| if key == '__file__': |
| return 'torch.ops' |
| |
| # ensure that query for dunder attributes that does not exist on |
| # opoverloadpacket but instead exists on the self._op object does not unnecessarily call |
| # `_get_operation_overload` (which is an expensive operation). |
| # This is done to prevent any potential slowdown. This list can be extended |
| # if there exists other attributes like `__name__` that only exist on self._op and not on the |
| # opoverloadpacket. |
| # This is ok since we are guaranteed that an overload name for an aten op can't start with '__' |
| try: |
| if key.startswith('__'): |
| return getattr(self._op, key) |
| except AttributeError: |
| # for consistency because it seems weird to |
| # throw an attribute error with a message containing |
| # an object name different from the one the attribute |
| # query was performed on. |
| raise AttributeError("'{}' can't have an overload name beginning with '__' and the " |
| "underlying op {} has no attribute {} either." |
| .format(str(self), str(self._op), key)) from None |
| |
| try: |
| # This is ok since we are guaranteed that an overload name for an aten op can't be 'default' |
| use_key = '' if key == 'default' else key |
| # TODO: disallow access to overloads registered by JIT |
| op_, tags = torch._C._get_operation_overload( |
| self._qualified_op_name, use_key) |
| schema = torch._C._get_schema(self._qualified_op_name, use_key) |
| overload = OpOverload(self, op_, schema, tags) |
| # cache the overload object |
| setattr(self, key, overload) |
| return overload |
| except RuntimeError: |
| raise AttributeError( |
| "The underlying op of '{}' has no overload name '{}'".format(str(self), key) |
| ) from None |
| |
| def __call__(self, *args, **kwargs): |
| # overloading __call__ to ensure torch.ops.foo.bar() |
| # is still callable from JIT |
| # We save the function ptr as the `op` attribute on |
| # OpOverloadPacket to access it here. |
| return self._op(*args, **kwargs or {}) |
| |
| # TODO: use this to make a __dir__ |
| def overloads(self): |
| return [n if n else "default" for n in self._overload_names] |
| |
| # Resolution of torch.fn is different from torch.ops.aten.fn |
| # torch.fn uses the Python argparser, matches with the |
| # appropriate schema, and calls into the unboxed version of the method |
| # torch.ops.aten.fn resolution is done via the mechanism defined in JIT. |
| # JIT creates a stack of all the overloads and then tries to match the |
| # correct one at runtime and always calls into the boxed version of the method |
| # Autograd codegen creates VariableType, TracerType, |
| # inplace or view type and python bindings. |
| # Aten codegen generates tensor methods for the the tensor class. |
| |
| # _OpNamespace is a subclass of ModuleType because the torch script |
| # allows attribute lookups on modules only. Since we want torch.ops.foo.bar() |
| # to work from script, we need to ensure ops and foo are modules |
| |
| |
| class _OpNamespace(types.ModuleType): |
| """ |
| An op namespace to dynamically bind Operators into Python. |
| |
| Say a user has created a custom Operator called "my_namespace::my_op". To |
| call this op, the user will write torch.ops.my_namespace.my_op(...). |
| At startup, this operation will not yet be bound into Python. Instead, the |
| following sequence of magic tricks will occur: |
| 1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method |
| on the `torch.ops` object, which will create a new `_OpNamespace` |
| object called `my_namespace` and set it as an attribute on the `ops` |
| object. |
| 2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on |
| the `my_namespace` object, which will retrieve the operation via |
| `torch.get_operation`, a function bound from C++, and then in a similar |
| fashion bind this new object onto the `my_namespace` object. |
| 3. `torch.ops.my_namespace.my_op(...)` then calls this new operation |
| and subsequent accesses will incur no further lookup (the namespace and |
| operation will already exist). |
| """ |
| def __init__(self, name): |
| super(_OpNamespace, self).__init__('torch.ops.' + name) |
| self.name = name |
| |
| def __getattr__(self, op_name): |
| # It is not a valid op_name when __file__ is passed in |
| if op_name == '__file__': |
| return 'torch.ops' |
| |
| # Get the op `my_namespace::my_op` if available. This will also check |
| # for overloads and raise an exception if there are more than one. |
| namespace_name = self.name |
| qualified_op_name = '{}::{}'.format(namespace_name, op_name) |
| try: |
| op, overload_names = torch._C._jit_get_operation(qualified_op_name) |
| except RuntimeError as e: |
| # Turn this into AttributeError so getattr(obj, key, default) |
| # works (this is called by TorchScript with __origin__) |
| raise AttributeError(f"'_OpNamespace' object has no attribute '{op_name}'") from e |
| |
| # let the script frontend know that op is identical to the builtin op |
| # with qualified_op_name |
| torch.jit._builtins._register_builtin(op, qualified_op_name) |
| op.__module__ = self.__module__ + "." + namespace_name |
| opoverloadpacket = OpOverloadPacket(qualified_op_name, op_name, op, overload_names) |
| opoverloadpacket.__module__ = self.__module__ + "." + namespace_name |
| # cache the opoverloadpacket to ensure that each op corresponds to |
| # a unique OpOverloadPacket object |
| setattr(self, op_name, opoverloadpacket) |
| return opoverloadpacket |
| |
| |
| class _Ops(types.ModuleType): |
| __file__ = '_ops.py' |
| |
| def __init__(self): |
| super(_Ops, self).__init__('torch.ops') |
| self.loaded_libraries = set() |
| |
| def __getattr__(self, name): |
| # Here we are creating `torch.ops.my_namespace` |
| namespace = _OpNamespace(name) |
| setattr(self, name, namespace) |
| return namespace |
| |
| def load_library(self, path): |
| """ |
| Loads a shared library from the given path into the current process. |
| |
| The library being loaded may run global initialization code to register |
| custom operators with the PyTorch JIT runtime. This allows dynamically |
| loading custom operators. For this, you should compile your operator |
| and the static registration code into a shared library object, and then |
| call ``torch.ops.load_library('path/to/libcustom.so')`` to load the |
| shared object. |
| |
| After the library is loaded, it is added to the |
| ``torch.ops.loaded_libraries`` attribute, a set that may be inspected |
| for the paths of all libraries loaded using this function. |
| |
| Args: |
| path (str): A path to a shared library to load. |
| """ |
| if sys.executable == "torch_deploy": |
| return |
| |
| path = _utils_internal.resolve_library_path(path) |
| with dl_open_guard(): |
| # Import the shared library into the process, thus running its |
| # static (global) initialization code in order to register custom |
| # operators with the JIT. |
| ctypes.CDLL(path) |
| self.loaded_libraries.add(path) |
| |
| |
| # The ops "namespace" |
| ops = _Ops() |