| from __future__ import annotations |
| from collections import OrderedDict |
| from typing import Any, Callable, Dict, Tuple, Union |
| |
| import torch |
| |
| from .fake_quantize import default_weight_fake_quant |
| from .observer import ( |
| _PartialWrapper, |
| default_fixed_qparams_range_0to1_observer, |
| default_fixed_qparams_range_neg1to1_observer, |
| default_weight_observer, |
| ) |
| from .qconfig import ( |
| default_reuse_input_qconfig, |
| get_default_qconfig, |
| get_default_qat_qconfig, |
| QConfig, |
| QConfigAny |
| ) |
| |
| |
| __all__ = [ |
| "get_default_qconfig_mapping", |
| "get_default_qat_qconfig_mapping", |
| "QConfigMapping", |
| ] |
| |
| |
| # TODO: replace all usages with these constants |
| GLOBAL_DICT_KEY = "" |
| OBJECT_TYPE_DICT_KEY = "object_type" |
| MODULE_NAME_REGEX_DICT_KEY = "module_name_regex" |
| MODULE_NAME_DICT_KEY = "module_name" |
| MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY = "module_name_object_type_order" |
| |
| _FIXED_QPARAMS_OP_TO_OBSERVER: Dict[Union[Callable, str], _PartialWrapper] = { |
| torch.nn.Hardsigmoid: default_fixed_qparams_range_0to1_observer, |
| torch.nn.functional.hardsigmoid: default_fixed_qparams_range_0to1_observer, |
| "hardsigmoid": default_fixed_qparams_range_0to1_observer, |
| "hardsigmoid_": default_fixed_qparams_range_0to1_observer, |
| torch.nn.Sigmoid: default_fixed_qparams_range_0to1_observer, |
| torch.sigmoid: default_fixed_qparams_range_0to1_observer, |
| "sigmoid": default_fixed_qparams_range_0to1_observer, |
| "sigmoid_": default_fixed_qparams_range_0to1_observer, |
| torch.nn.Softmax: default_fixed_qparams_range_0to1_observer, |
| torch.nn.Tanh: default_fixed_qparams_range_neg1to1_observer, |
| torch.tanh: default_fixed_qparams_range_neg1to1_observer, |
| "tanh": default_fixed_qparams_range_neg1to1_observer, |
| "tanh_": default_fixed_qparams_range_neg1to1_observer, |
| } |
| |
| |
| def _get_default_qconfig_mapping(is_qat: bool, backend: str, version: int) -> QConfigMapping: |
| """ |
| Return the default QConfigMapping for the given quantization type and backend. |
| """ |
| if is_qat: |
| qconfig = get_default_qat_qconfig(backend, version) |
| else: |
| qconfig = get_default_qconfig(backend, version) |
| default_weight = default_weight_fake_quant if is_qat else default_weight_observer |
| |
| # default_per_channel_weight_observer is not currently compatible with fbgemm backend |
| # so we have to modify the weight observer to default_weight_observer or another |
| # per tensor supported observer. |
| # see https://github.com/pytorch/pytorch/issues/47535 |
| if backend == "fbgemm": |
| qconfig_transpose = QConfig(activation=qconfig.activation, weight=default_weight) |
| else: |
| qconfig_transpose = qconfig |
| |
| qconfig_mapping = QConfigMapping() \ |
| .set_global(qconfig) \ |
| .set_object_type("reshape", default_reuse_input_qconfig) \ |
| .set_object_type(torch.nn.Conv1d, qconfig) \ |
| .set_object_type(torch.nn.Conv2d, qconfig) \ |
| .set_object_type(torch.nn.Conv3d, qconfig) \ |
| .set_object_type(torch.nn.ConvTranspose1d, qconfig_transpose) \ |
| .set_object_type(torch.nn.ConvTranspose2d, qconfig_transpose) \ |
| .set_object_type(torch.nn.ConvTranspose3d, qconfig_transpose) \ |
| .set_object_type(torch.nn.Linear, qconfig) \ |
| .set_object_type(torch.nn.functional.conv1d, qconfig) \ |
| .set_object_type(torch.nn.functional.conv2d, qconfig) \ |
| .set_object_type(torch.nn.functional.conv3d, qconfig) \ |
| .set_object_type(torch.nn.functional.conv_transpose1d, qconfig_transpose) \ |
| .set_object_type(torch.nn.functional.conv_transpose2d, qconfig_transpose) \ |
| .set_object_type(torch.nn.functional.conv_transpose3d, qconfig_transpose) \ |
| .set_object_type(torch.nn.functional.linear, qconfig) \ |
| .set_object_type(torch.nn.ReLU, qconfig) \ |
| .set_object_type(torch.nn.functional.relu, qconfig) \ |
| .set_object_type(torch.relu, qconfig) \ |
| .set_object_type(torch.nn.BatchNorm1d, qconfig) \ |
| .set_object_type(torch.nn.BatchNorm2d, qconfig) \ |
| .set_object_type(torch.nn.BatchNorm3d, qconfig) |
| |
| # Use special observers for ops with fixed qparams |
| fixed_qparams_observer_to_qconfig: Dict[Any, QConfigAny] = {} |
| for fixed_qparams_op, observer in _FIXED_QPARAMS_OP_TO_OBSERVER.items(): |
| if observer in fixed_qparams_observer_to_qconfig: |
| fixed_qparams_qconfig = fixed_qparams_observer_to_qconfig[observer] |
| else: |
| fixed_qparams_qconfig = QConfig(activation=observer, weight=default_weight) |
| fixed_qparams_observer_to_qconfig[observer] = fixed_qparams_qconfig |
| qconfig_mapping.set_object_type(fixed_qparams_op, fixed_qparams_qconfig) |
| |
| return qconfig_mapping |
| |
| def get_default_qconfig_mapping(backend="fbgemm", version=0) -> QConfigMapping: |
| """ |
| Return the default QConfigMapping for post training quantization. |
| """ |
| return _get_default_qconfig_mapping(False, backend, version) |
| |
| def get_default_qat_qconfig_mapping(backend="fbgemm", version=1) -> QConfigMapping: |
| """ |
| Return the default QConfigMapping for quantization aware training. |
| """ |
| return _get_default_qconfig_mapping(True, backend, version) |
| |
| |
| class QConfigMapping: |
| """ |
| Mapping from model ops to :class:`torch.ao.quantization.QConfig`s. |
| |
| The user can specify QConfigs using the following methods (in increasing match priority): |
| |
| `set_global`: sets the global (default) QConfig |
| `set_object_type`: sets the QConfig for a given module type, function, or method name |
| `set_module_name_regex`: sets the QConfig for modules matching the given regex string |
| `set_module_name`: sets the QConfig for modules matching the given module name |
| `set_module_name_object_type_order`: sets the QConfig for modules matching a combination |
| of the given module name, object type, and the index at which the module appears |
| |
| Example usage:: |
| |
| qconfig_mapping = QConfigMapping() |
| .set_global(global_qconfig) |
| .set_object_type(torch.nn.Linear, qconfig1) |
| .set_object_type(torch.nn.ReLU, qconfig1) |
| .set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1) |
| .set_module_name_regex("foo.*", qconfig2) |
| .set_module_name("module1", qconfig1) |
| .set_module_name("module2", qconfig2) |
| .set_module_name_object_type_order("foo.bar", torch.nn.functional.linear, 0, qconfig3) |
| """ |
| |
| def __init__(self): |
| # In increasing match priority: |
| self.global_qconfig: QConfigAny = None |
| self.object_type_qconfigs: OrderedDict[Union[Callable, str], QConfigAny] = OrderedDict() |
| self.module_name_regex_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict() |
| self.module_name_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict() |
| self.module_name_object_type_order_qconfigs: OrderedDict[Tuple[str, Callable, int], QConfigAny] =\ |
| OrderedDict() |
| |
| def set_global(self, global_qconfig: QConfigAny) -> QConfigMapping: |
| """ |
| Set the global (default) QConfig. |
| """ |
| self.global_qconfig = global_qconfig |
| return self |
| |
| def set_object_type(self, object_type: Union[Callable, str], qconfig: QConfigAny) -> QConfigMapping: |
| """ |
| Set the QConfig for a given module type, function, or method name. |
| If the QConfig for an existing object type was already set, the new QConfig will override the old one. |
| """ |
| self.object_type_qconfigs[object_type] = qconfig |
| return self |
| |
| def set_module_name_regex(self, module_name_regex: str, qconfig: QConfigAny) -> QConfigMapping: |
| """ |
| Set the QConfig for modules matching the given regex string. |
| |
| Regexes will be matched in the order in which they are registered through this method. |
| Thus, the caller should register more specific patterns first, e.g.:: |
| |
| qconfig_mapping = QConfigMapping() |
| .set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1) |
| .set_module_name_regex("foo.*bar.*", qconfig2) |
| .set_module_name_regex("foo.*", qconfig3) |
| |
| In this example, "foo.bar.conv0" would match qconfig1, "foo.bar.linear" would match qconfig2, |
| and "foo.baz.relu" would match qconfig3. |
| |
| If the QConfig for an existing module name regex was already set, the new QConfig will override the |
| old one while preserving the order in which the regexes were originally registered. |
| """ |
| self.module_name_regex_qconfigs[module_name_regex] = qconfig |
| return self |
| |
| def set_module_name(self, module_name: str, qconfig: QConfigAny) -> QConfigMapping: |
| """ |
| Set the QConfig for modules matching the given module name. |
| If the QConfig for an existing module name was already set, the new QConfig will override the old one. |
| """ |
| self.module_name_qconfigs[module_name] = qconfig |
| return self |
| |
| def set_module_name_object_type_order( |
| self, |
| module_name: str, |
| object_type: Callable, |
| index: int, |
| qconfig: QConfigAny) -> QConfigMapping: |
| """ |
| Set the QConfig for modules matching a combination of the given module name, object type, |
| and the index at which the module appears. |
| |
| If the QConfig for an existing (module name, object type, index) was already set, the new QConfig |
| will override the old one. |
| """ |
| self.module_name_object_type_order_qconfigs[(module_name, object_type, index)] = qconfig |
| return self |
| |
| # TODO: remove this |
| def to_dict(self) -> Dict[str, Any]: |
| """ |
| Convert this `QConfigMapping` to a dictionary with the following keys: |
| |
| "" (for global QConfig) |
| "object_type" |
| "module_name_regex" |
| "module_name" |
| "module_name_object_type_order" |
| |
| The values of this dictionary are lists of tuples. |
| """ |
| return { |
| GLOBAL_DICT_KEY: self.global_qconfig, |
| OBJECT_TYPE_DICT_KEY: list(self.object_type_qconfigs.items()), |
| MODULE_NAME_REGEX_DICT_KEY: list(self.module_name_regex_qconfigs.items()), |
| MODULE_NAME_DICT_KEY: list(self.module_name_qconfigs.items()), |
| MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY: [ |
| (*k, v) for k, v in self.module_name_object_type_order_qconfigs.items() |
| ], |
| } |
| |
| # TODO: remove this |
| @classmethod |
| def from_dict(cls, qconfig_dict: Dict[str, Any]) -> QConfigMapping: |
| """ |
| Create a `QConfigMapping` from a dictionary with the following keys (all optional): |
| |
| "" (for global QConfig) |
| "object_type" |
| "module_name_regex" |
| "module_name" |
| "module_name_object_type_order" |
| |
| The values of this dictionary are expected to be lists of tuples. |
| """ |
| conf = cls() |
| if GLOBAL_DICT_KEY in qconfig_dict: |
| conf.set_global(qconfig_dict[GLOBAL_DICT_KEY]) |
| for object_type, qconfig in qconfig_dict.get(OBJECT_TYPE_DICT_KEY, []): |
| conf.set_object_type(object_type, qconfig) |
| for module_name_regex, qconfig in qconfig_dict.get(MODULE_NAME_REGEX_DICT_KEY, []): |
| conf.set_module_name_regex(module_name_regex, qconfig) |
| for module_name, qconfig in qconfig_dict.get(MODULE_NAME_DICT_KEY, []): |
| conf.set_module_name(module_name, qconfig) |
| for module_name, object_type, index, qconfig in qconfig_dict.get(MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY, []): |
| conf.set_module_name_object_type_order(module_name, object_type, index, qconfig) |
| return conf |