| import torch |
| from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d |
| from torch.nn.utils.parametrize import type_before_parametrizations |
| |
| __all__ = ['ConvReLU1d', 'ConvReLU2d', 'ConvReLU3d', 'LinearReLU', 'ConvBn1d', 'ConvBn2d', |
| 'ConvBnReLU1d', 'ConvBnReLU2d', 'ConvBn3d', 'ConvBnReLU3d', 'BNReLU2d', 'BNReLU3d', |
| 'LinearBn1d'] |
| # Used for identifying intrinsic modules used in quantization |
| class _FusedModule(torch.nn.Sequential): |
| pass |
| |
| class ConvReLU1d(_FusedModule): |
| r"""This is a sequential container which calls the Conv1d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, relu): |
| assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(conv), type_before_parametrizations(relu)) |
| super().__init__(conv, relu) |
| |
| class ConvReLU2d(_FusedModule): |
| r"""This is a sequential container which calls the Conv2d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, relu): |
| assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(conv), type_before_parametrizations(relu)) |
| super().__init__(conv, relu) |
| |
| class ConvReLU3d(_FusedModule): |
| r"""This is a sequential container which calls the Conv3d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, relu): |
| assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(conv), type_before_parametrizations(relu)) |
| super().__init__(conv, relu) |
| |
| class LinearReLU(_FusedModule): |
| r"""This is a sequential container which calls the Linear and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, linear, relu): |
| assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(linear), type_before_parametrizations(relu)) |
| super().__init__(linear, relu) |
| |
| class ConvBn1d(_FusedModule): |
| r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn): |
| assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(conv), type_before_parametrizations(bn)) |
| super().__init__(conv, bn) |
| |
| class ConvBn2d(_FusedModule): |
| r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn): |
| assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(conv), type_before_parametrizations(bn)) |
| super(ConvBn2d, self).__init__(conv, bn) |
| |
| class ConvBnReLU1d(_FusedModule): |
| r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn, relu): |
| assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d and \ |
| type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ |
| .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu)) |
| super().__init__(conv, bn, relu) |
| |
| class ConvBnReLU2d(_FusedModule): |
| r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn, relu): |
| assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d and \ |
| type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ |
| .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu)) |
| super().__init__(conv, bn, relu) |
| |
| class ConvBn3d(_FusedModule): |
| r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn): |
| assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(conv), type_before_parametrizations(bn)) |
| super().__init__(conv, bn) |
| |
| class ConvBnReLU3d(_FusedModule): |
| r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn, relu): |
| assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d and \ |
| type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ |
| .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu)) |
| super().__init__(conv, bn, relu) |
| |
| |
| class BNReLU2d(_FusedModule): |
| r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, batch_norm, relu): |
| assert type_before_parametrizations(batch_norm) == BatchNorm2d and type_before_parametrizations(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(batch_norm), type_before_parametrizations(relu)) |
| super().__init__(batch_norm, relu) |
| |
| class BNReLU3d(_FusedModule): |
| r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, batch_norm, relu): |
| assert type_before_parametrizations(batch_norm) == BatchNorm3d and type_before_parametrizations(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type_before_parametrizations(batch_norm), type_before_parametrizations(relu)) |
| super().__init__(batch_norm, relu) |
| |
| |
| class LinearBn1d(_FusedModule): |
| r"""This is a sequential container which calls the Linear and BatchNorm1d modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, linear, bn): |
| assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(bn) == BatchNorm1d, \ |
| 'Incorrect types for input modules{}{}'.format(type_before_parametrizations(linear), type_before_parametrizations(bn)) |
| super().__init__(linear, bn) |