| # -*- coding: utf-8 -*- |
| from .module import Module |
| from .. import functional as F |
| |
| from torch import Tensor |
| from ..common_types import _size_any_t |
| |
| __all__ = ['Fold', 'Unfold'] |
| |
| class Fold(Module): |
| r"""Combines an array of sliding local blocks into a large containing |
| tensor. |
| |
| Consider a batched :attr:`input` tensor containing sliding local blocks, |
| e.g., patches of images, of shape :math:`(N, C \times \prod(\text{kernel\_size}), L)`, |
| where :math:`N` is batch dimension, :math:`C \times \prod(\text{kernel\_size})` |
| is the number of values within a block (a block has :math:`\prod(\text{kernel\_size})` |
| spatial locations each containing a :math:`C`-channeled vector), and |
| :math:`L` is the total number of blocks. (This is exactly the |
| same specification as the output shape of :class:`~torch.nn.Unfold`.) This |
| operation combines these local blocks into the large :attr:`output` tensor |
| of shape :math:`(N, C, \text{output\_size}[0], \text{output\_size}[1], \dots)` |
| by summing the overlapping values. Similar to :class:`~torch.nn.Unfold`, the |
| arguments must satisfy |
| |
| .. math:: |
| L = \prod_d \left\lfloor\frac{\text{output\_size}[d] + 2 \times \text{padding}[d] % |
| - \text{dilation}[d] \times (\text{kernel\_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor, |
| |
| where :math:`d` is over all spatial dimensions. |
| |
| * :attr:`output_size` describes the spatial shape of the large containing |
| tensor of the sliding local blocks. It is useful to resolve the ambiguity |
| when multiple input shapes map to same number of sliding blocks, e.g., |
| with ``stride > 0``. |
| |
| The :attr:`padding`, :attr:`stride` and :attr:`dilation` arguments specify |
| how the sliding blocks are retrieved. |
| |
| * :attr:`stride` controls the stride for the sliding blocks. |
| |
| * :attr:`padding` controls the amount of implicit zero-paddings on both |
| sides for :attr:`padding` number of points for each dimension before |
| reshaping. |
| |
| * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. |
| It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. |
| |
| Args: |
| output_size (int or tuple): the shape of the spatial dimensions of the |
| output (i.e., ``output.sizes()[2:]``) |
| kernel_size (int or tuple): the size of the sliding blocks |
| stride (int or tuple): the stride of the sliding blocks in the input |
| spatial dimensions. Default: 1 |
| padding (int or tuple, optional): implicit zero padding to be added on |
| both sides of input. Default: 0 |
| dilation (int or tuple, optional): a parameter that controls the |
| stride of elements within the |
| neighborhood. Default: 1 |
| |
| * If :attr:`output_size`, :attr:`kernel_size`, :attr:`dilation`, |
| :attr:`padding` or :attr:`stride` is an int or a tuple of length 1 then |
| their values will be replicated across all spatial dimensions. |
| |
| * For the case of two output spatial dimensions this operation is sometimes |
| called ``col2im``. |
| |
| .. note:: |
| :class:`~torch.nn.Fold` calculates each combined value in the resulting |
| large tensor by summing all values from all containing blocks. |
| :class:`~torch.nn.Unfold` extracts the values in the local blocks by |
| copying from the large tensor. So, if the blocks overlap, they are not |
| inverses of each other. |
| |
| In general, folding and unfolding operations are related as |
| follows. Consider :class:`~torch.nn.Fold` and |
| :class:`~torch.nn.Unfold` instances created with the same |
| parameters: |
| |
| >>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...) |
| >>> fold = nn.Fold(output_size=..., **fold_params) |
| >>> unfold = nn.Unfold(**fold_params) |
| |
| Then for any (supported) ``input`` tensor the following |
| equality holds: |
| |
| :: |
| |
| fold(unfold(input)) == divisor * input |
| |
| where ``divisor`` is a tensor that depends only on the shape |
| and dtype of the ``input``: |
| |
| >>> input_ones = torch.ones(input.shape, dtype=input.dtype) |
| >>> divisor = fold(unfold(input_ones)) |
| |
| When the ``divisor`` tensor contains no zero elements, then |
| ``fold`` and ``unfold`` operations are inverses of each |
| other (up to constant divisor). |
| |
| .. warning:: |
| Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported. |
| |
| Shape: |
| - Input: :math:`(N, C \times \prod(\text{kernel\_size}), L)` or :math:`(C \times \prod(\text{kernel\_size}), L)` |
| - Output: :math:`(N, C, \text{output\_size}[0], \text{output\_size}[1], \dots)` |
| or :math:`(C, \text{output\_size}[0], \text{output\_size}[1], \dots)` as described above |
| |
| Examples:: |
| |
| >>> fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 2)) |
| >>> input = torch.randn(1, 3 * 2 * 2, 12) |
| >>> output = fold(input) |
| >>> output.size() |
| torch.Size([1, 3, 4, 5]) |
| |
| .. _link: |
| https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
| |
| """ |
| __constants__ = ['output_size', 'kernel_size', 'dilation', 'padding', |
| 'stride'] |
| output_size: _size_any_t |
| kernel_size: _size_any_t |
| dilation: _size_any_t |
| padding: _size_any_t |
| stride: _size_any_t |
| |
| def __init__( |
| self, |
| output_size: _size_any_t, |
| kernel_size: _size_any_t, |
| dilation: _size_any_t = 1, |
| padding: _size_any_t = 0, |
| stride: _size_any_t = 1 |
| ) -> None: |
| super(Fold, self).__init__() |
| self.output_size = output_size |
| self.kernel_size = kernel_size |
| self.dilation = dilation |
| self.padding = padding |
| self.stride = stride |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.fold(input, self.output_size, self.kernel_size, self.dilation, |
| self.padding, self.stride) |
| |
| def extra_repr(self) -> str: |
| return 'output_size={output_size}, kernel_size={kernel_size}, ' \ |
| 'dilation={dilation}, padding={padding}, stride={stride}'.format( |
| **self.__dict__ |
| ) |
| |
| |
| class Unfold(Module): |
| r"""Extracts sliding local blocks from a batched input tensor. |
| |
| Consider a batched :attr:`input` tensor of shape :math:`(N, C, *)`, |
| where :math:`N` is the batch dimension, :math:`C` is the channel dimension, |
| and :math:`*` represent arbitrary spatial dimensions. This operation flattens |
| each sliding :attr:`kernel_size`-sized block within the spatial dimensions |
| of :attr:`input` into a column (i.e., last dimension) of a 3-D :attr:`output` |
| tensor of shape :math:`(N, C \times \prod(\text{kernel\_size}), L)`, where |
| :math:`C \times \prod(\text{kernel\_size})` is the total number of values |
| within each block (a block has :math:`\prod(\text{kernel\_size})` spatial |
| locations each containing a :math:`C`-channeled vector), and :math:`L` is |
| the total number of such blocks: |
| |
| .. math:: |
| L = \prod_d \left\lfloor\frac{\text{spatial\_size}[d] + 2 \times \text{padding}[d] % |
| - \text{dilation}[d] \times (\text{kernel\_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor, |
| |
| where :math:`\text{spatial\_size}` is formed by the spatial dimensions |
| of :attr:`input` (:math:`*` above), and :math:`d` is over all spatial |
| dimensions. |
| |
| Therefore, indexing :attr:`output` at the last dimension (column dimension) |
| gives all values within a certain block. |
| |
| The :attr:`padding`, :attr:`stride` and :attr:`dilation` arguments specify |
| how the sliding blocks are retrieved. |
| |
| * :attr:`stride` controls the stride for the sliding blocks. |
| |
| * :attr:`padding` controls the amount of implicit zero-paddings on both |
| sides for :attr:`padding` number of points for each dimension before |
| reshaping. |
| |
| * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm. |
| It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does. |
| |
| Args: |
| kernel_size (int or tuple): the size of the sliding blocks |
| stride (int or tuple, optional): the stride of the sliding blocks in the input |
| spatial dimensions. Default: 1 |
| padding (int or tuple, optional): implicit zero padding to be added on |
| both sides of input. Default: 0 |
| dilation (int or tuple, optional): a parameter that controls the |
| stride of elements within the |
| neighborhood. Default: 1 |
| |
| * If :attr:`kernel_size`, :attr:`dilation`, :attr:`padding` or |
| :attr:`stride` is an int or a tuple of length 1, their values will be |
| replicated across all spatial dimensions. |
| |
| * For the case of two input spatial dimensions this operation is sometimes |
| called ``im2col``. |
| |
| .. note:: |
| :class:`~torch.nn.Fold` calculates each combined value in the resulting |
| large tensor by summing all values from all containing blocks. |
| :class:`~torch.nn.Unfold` extracts the values in the local blocks by |
| copying from the large tensor. So, if the blocks overlap, they are not |
| inverses of each other. |
| |
| In general, folding and unfolding operations are related as |
| follows. Consider :class:`~torch.nn.Fold` and |
| :class:`~torch.nn.Unfold` instances created with the same |
| parameters: |
| |
| >>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...) |
| >>> fold = nn.Fold(output_size=..., **fold_params) |
| >>> unfold = nn.Unfold(**fold_params) |
| |
| Then for any (supported) ``input`` tensor the following |
| equality holds: |
| |
| :: |
| |
| fold(unfold(input)) == divisor * input |
| |
| where ``divisor`` is a tensor that depends only on the shape |
| and dtype of the ``input``: |
| |
| >>> input_ones = torch.ones(input.shape, dtype=input.dtype) |
| >>> divisor = fold(unfold(input_ones)) |
| |
| When the ``divisor`` tensor contains no zero elements, then |
| ``fold`` and ``unfold`` operations are inverses of each |
| other (up to constant divisor). |
| |
| .. warning:: |
| Currently, only 4-D input tensors (batched image-like tensors) are |
| supported. |
| |
| Shape: |
| - Input: :math:`(N, C, *)` |
| - Output: :math:`(N, C \times \prod(\text{kernel\_size}), L)` as described above |
| |
| Examples:: |
| |
| >>> unfold = nn.Unfold(kernel_size=(2, 3)) |
| >>> input = torch.randn(2, 5, 3, 4) |
| >>> output = unfold(input) |
| >>> # each patch contains 30 values (2x3=6 vectors, each of 5 channels) |
| >>> # 4 blocks (2x3 kernels) in total in the 3x4 input |
| >>> output.size() |
| torch.Size([2, 30, 4]) |
| |
| >>> # Convolution is equivalent with Unfold + Matrix Multiplication + Fold (or view to output shape) |
| >>> inp = torch.randn(1, 3, 10, 12) |
| >>> w = torch.randn(2, 3, 4, 5) |
| >>> inp_unf = torch.nn.functional.unfold(inp, (4, 5)) |
| >>> out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2) |
| >>> out = torch.nn.functional.fold(out_unf, (7, 8), (1, 1)) |
| >>> # or equivalently (and avoiding a copy), |
| >>> # out = out_unf.view(1, 2, 7, 8) |
| >>> (torch.nn.functional.conv2d(inp, w) - out).abs().max() |
| tensor(1.9073e-06) |
| |
| .. _link: |
| https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md |
| |
| """ |
| __constants__ = ['kernel_size', 'dilation', 'padding', 'stride'] |
| kernel_size: _size_any_t |
| dilation: _size_any_t |
| padding: _size_any_t |
| stride: _size_any_t |
| |
| def __init__( |
| self, |
| kernel_size: _size_any_t, |
| dilation: _size_any_t = 1, |
| padding: _size_any_t = 0, |
| stride: _size_any_t = 1 |
| ) -> None: |
| super(Unfold, self).__init__() |
| self.kernel_size = kernel_size |
| self.dilation = dilation |
| self.padding = padding |
| self.stride = stride |
| |
| def forward(self, input: Tensor) -> Tensor: |
| return F.unfold(input, self.kernel_size, self.dilation, |
| self.padding, self.stride) |
| |
| def extra_repr(self) -> str: |
| return 'kernel_size={kernel_size}, dilation={dilation}, padding={padding},' \ |
| ' stride={stride}'.format(**self.__dict__) |