blob: 93c7f1b130d4a7cee243f13ea27ab5aa773ae48d [file] [log] [blame]
import argparse
import time
import torch
from common import SubTensor, SubWithTorchFunction, WithTorchFunction
NUM_REPEATS = 1000
NUM_REPEAT_OF_REPEATS = 1000
def bench(t1, t2):
bench_times = []
for _ in range(NUM_REPEAT_OF_REPEATS):
time_start = time.time()
for _ in range(NUM_REPEATS):
torch.add(t1, t2)
bench_times.append(time.time() - time_start)
bench_time = float(torch.min(torch.tensor(bench_times))) / 1000
bench_std = float(torch.std(torch.tensor(bench_times))) / 1000
return bench_time, bench_std
def main():
global NUM_REPEATS
global NUM_REPEAT_OF_REPEATS
parser = argparse.ArgumentParser(
description="Run the __torch_function__ benchmarks."
)
parser.add_argument(
"--nreps",
"-n",
type=int,
default=NUM_REPEATS,
help="The number of repeats for one measurement.",
)
parser.add_argument(
"--nrepreps",
"-m",
type=int,
default=NUM_REPEAT_OF_REPEATS,
help="The number of measurements.",
)
args = parser.parse_args()
NUM_REPEATS = args.nreps
NUM_REPEAT_OF_REPEATS = args.nrepreps
types = torch.tensor, SubTensor, WithTorchFunction, SubWithTorchFunction
for t in types:
tensor_1 = t([1.0])
tensor_2 = t([2.0])
bench_min, bench_std = bench(tensor_1, tensor_2)
print(
f"Type {t.__name__} had a minimum time of {10**6 * bench_min} us"
f" and a standard deviation of {(10**6) * bench_std} us."
)
if __name__ == "__main__":
main()