blob: 7abf2677e6dafec7f5df65e89e857c45493b0668 [file] [log] [blame]
import argparse
import sys
import torch
from utils import Event, gen_sparse_coo, gen_sparse_csr
def test_sparse_csr(m, n, k, nnz, test_count):
start_timer = Event(enable_timing=True)
stop_timer = Event(enable_timing=True)
csr = gen_sparse_csr((m, k), nnz)
mat = torch.randn(k, n, dtype=torch.double)
times = []
for _ in range(test_count):
start_timer.record()
csr.matmul(mat)
stop_timer.record()
times.append(start_timer.elapsed_time(stop_timer))
return sum(times) / len(times)
def test_sparse_coo(m, n, k, nnz, test_count):
start_timer = Event(enable_timing=True)
stop_timer = Event(enable_timing=True)
coo = gen_sparse_coo((m, k), nnz)
mat = torch.randn(k, n, dtype=torch.double)
times = []
for _ in range(test_count):
start_timer.record()
coo.matmul(mat)
stop_timer.record()
times.append(start_timer.elapsed_time(stop_timer))
return sum(times) / len(times)
def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
start = Event(enable_timing=True)
stop = Event(enable_timing=True)
coo, csr = gen_sparse_coo_and_csr((m, k), nnz)
mat = torch.randn((k, n), dtype=torch.double)
times = []
for _ in range(test_count):
start.record()
coo.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
coo_mean_time = sum(times) / len(times)
times = []
for _ in range(test_count):
start.record()
csr.matmul(mat)
stop.record()
times.append(start.elapsed_time(stop))
csr_mean_time = sum(times) / len(times)
return coo_mean_time, csr_mean_time
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SpMM")
parser.add_argument("--format", default="csr", type=str)
parser.add_argument("--m", default="1000", type=int)
parser.add_argument("--n", default="1000", type=int)
parser.add_argument("--k", default="1000", type=int)
parser.add_argument("--nnz-ratio", "--nnz_ratio", default="0.1", type=float)
parser.add_argument("--outfile", default="stdout", type=str)
parser.add_argument("--test-count", "--test_count", default="10", type=int)
args = parser.parse_args()
if args.outfile == "stdout":
outfile = sys.stdout
elif args.outfile == "stderr":
outfile = sys.stderr
else:
outfile = open(args.outfile, "a")
test_count = args.test_count
m = args.m
n = args.n
k = args.k
nnz_ratio = args.nnz_ratio
nnz = int(nnz_ratio * m * k)
if args.format == "csr":
time = test_sparse_csr(m, n, k, nnz, test_count)
elif args.format == "coo":
time = test_sparse_coo(m, n, k, nnz, test_count)
elif args.format == "both":
time_coo, time_csr = test_sparse_coo_and_csr(m, nnz, test_count)
if args.format == "both":
print(
"format=coo",
" nnz_ratio=",
nnz_ratio,
" m=",
m,
" n=",
n,
" k=",
k,
" time=",
time_coo,
file=outfile,
)
print(
"format=csr",
" nnz_ratio=",
nnz_ratio,
" m=",
m,
" n=",
n,
" k=",
k,
" time=",
time_csr,
file=outfile,
)
else:
print(
"format=",
args.format,
" nnz_ratio=",
nnz_ratio,
" m=",
m,
" n=",
n,
" k=",
k,
" time=",
time,
file=outfile,
)