| /** |
| * Copyright (c) 2016-present, Facebook, Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "sigmoid_focal_loss_op.h" |
| |
| namespace caffe2 { |
| |
| REGISTER_CPU_OPERATOR(SigmoidFocalLoss, SigmoidFocalLossOp<float, CPUContext>); |
| REGISTER_CPU_OPERATOR( |
| SigmoidFocalLossGradient, |
| SigmoidFocalLossGradientOp<float, CPUContext>); |
| |
| OPERATOR_SCHEMA(SigmoidFocalLoss) |
| .NumInputs(3) |
| .NumOutputs(1) |
| .SetDoc(R"DOC( |
| The binary form of Focal Loss designed for use in RetinaNet-like models. |
| The input is assumed to be unnormalized scores (sometimes called 'logits') |
| arranged in a 4D tensor with shape (N, C, H, W), where N is the number of |
| elements in the batch, H and W are the height and width, and C = num_anchors * |
| num_classes defines num_anchors 'groups' of logits, each of length |
| num_classes. For the binary form of Focal Loss, num_classes does not include |
| the background category. (So, for COCO, num_classes = 80, not 81.) |
| |
| The binary form of focal loss is: |
| |
| FL(p_t) = -alpha * (1 - p_t)**gamma * log(p_t), |
| |
| where p = sigmoid(x), p_t = p or 1 - p depending on if the label is 1 or 0, |
| respectively. |
| |
| See: https://arxiv.org/abs/1708.02002 for details. |
| )DOC") |
| .Arg( |
| "scale", |
| "(float) default 1.0; multiply the loss by this scale factor.") |
| .Arg( |
| "alpha", |
| "(float) default 0.25; Focal Loss's alpha hyper-parameter.") |
| .Arg( |
| "gamma", |
| "(float) default 1.0; Focal Loss's gamma hyper-parameter.") |
| .Arg( |
| "num_classes", |
| "(int) default 80; number of classes (excluding background).") |
| .Input( |
| 0, |
| "logits", |
| "4D tensor of sigmoid inputs (called 'scores' or 'logits') with shape " |
| "(N, C, H, W), where C = num_anchors * num_classes.") |
| .Input( |
| 1, |
| "labels", |
| "4D tensor of labels with shape (N, num_anchors, H, W). Each entry is " |
| "a class label in [0, num_classes - 1] (inclusive). The label " |
| "identifies the one class that should have a sigmoid target of 1.") |
| .Input( |
| 2, |
| "normalizer", |
| "Scalar; the loss is normalized by 1 / max(1, normalizer)." |
| ) |
| .Output( |
| 0, |
| "loss", |
| "Scalar loss."); |
| |
| OPERATOR_SCHEMA(SigmoidFocalLossGradient) |
| .NumInputs(4) |
| .NumOutputs(1) |
| .Input( |
| 0, |
| "logits", |
| "See SigmoidFocalLoss.") |
| .Input( |
| 1, |
| "labels", |
| "See SigmoidFocalLoss.") |
| .Input( |
| 2, |
| "normalizer", |
| "See SigmoidFocalLoss.") |
| .Input( |
| 3, |
| "d_loss", |
| "Gradient of forward output 0 (loss)") |
| .Output( |
| 0, |
| "d_logits", |
| "Gradient of forward input 0 (logits)"); |
| |
| class GetSigmoidFocalLossGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| |
| vector<OperatorDef> GetGradientDefs() override { |
| vector<string> blob_names{ |
| {I(0), I(1), I(2), GO(0)}, |
| }; |
| |
| return SingleGradientDef( |
| "SigmoidFocalLossGradient", "", blob_names, vector<string>{GI(0)}); |
| } |
| }; |
| |
| REGISTER_GRADIENT(SigmoidFocalLoss, GetSigmoidFocalLossGradient); |
| |
| } // namespace caffe2 |