blob: 4079a436e1efda9d52e20fcee4912d33c8094207 [file] [log] [blame]
#include <torch/cuda.h>
#include <torch/script.h>
#include <string>
#include "custom_backend.h"
// Load a module lowered for the custom backend from \p path and test that
// it can be executed and produces correct results.
void load_serialized_lowered_module_and_execute(const std::string& path) {
torch::jit::Module module = torch::jit::load(path);
// The custom backend is hardcoded to compute f(a, b) = (a + b, a - b).
auto tensor = torch::ones(5);
std::vector<torch::jit::IValue> inputs{tensor, tensor};
auto output = module.forward(inputs);
AT_ASSERT(output.isTuple());
auto output_elements = output.toTupleRef().elements();
for (auto& e : output_elements) {
AT_ASSERT(e.isTensor());
}
AT_ASSERT(output_elements.size(), 2);
AT_ASSERT(output_elements[0].toTensor().allclose(tensor + tensor));
AT_ASSERT(output_elements[1].toTensor().allclose(tensor - tensor));
}
int main(int argc, const char* argv[]) {
if (argc != 2) {
std::cerr
<< "usage: test_custom_backend <path-to-exported-script-module>\n";
return -1;
}
const std::string path_to_exported_script_module = argv[1];
std::cout << "Testing " << torch::custom_backend::getBackendName() << "\n";
load_serialized_lowered_module_and_execute(path_to_exported_script_module);
std::cout << "OK\n";
return 0;
}