blob: 9bcaf6bd2200ef7d22120e263e21c002ae4bc778 [file] [log] [blame]
# Owner(s): ["module: inductor"]
import contextlib
import sympy
import torch
import torch._inductor.config as inductor_config
from torch._inductor.codegen import triton_utils
from torch._inductor.codegen.common import SizeArg
from torch._inductor.graph import GraphLowering
from torch._inductor.virtualized import V
from torch.testing._internal.common_utils import TestCase as TorchTestCase
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
class TestCodegenTriton(TorchTestCase):
def setUp(self):
super().setUp()
class DummyModule(torch.nn.Module):
def forward(self, x):
return x * 2
self._gm = torch.fx.symbolic_trace(DummyModule())
self._graph = GraphLowering(self._gm)
self._stack = contextlib.ExitStack()
self._stack.enter_context(V.set_graph_handler(self._graph))
def tearDown(self):
self._stack.close()
super().tearDown()
@inductor_config.patch("triton.divisible_by_16", True)
def test_config_of_sizearg(self):
two = sympy.Integer(2)
eight = sympy.Integer(8)
sixteen = sympy.Integer(16)
s0 = sympy.Symbol("s0", positive=True, integer=True)
s1 = sympy.Symbol("s1", positive=True, integer=True)
self.assertEqual(
(2,),
triton_utils.config_of(
[
SizeArg("A", two), # no
SizeArg("B", eight), # no
SizeArg("C", sixteen), # yes
SizeArg("D", s0), # no
SizeArg("E", s1), # no
]
).divisible_by_16,
)
self.assertEqual(
(0, 2, 4, 5, 6),
triton_utils.config_of(
[
SizeArg("A", two * eight), # 0: yes
SizeArg("B", eight * s0), # 1: no
SizeArg("C", two * eight * s0), # 2: yes
SizeArg("D", s0 * s1), # 3: no
SizeArg("E", sixteen * s0), # 4: yes
SizeArg("F", sixteen * eight * s0 * s1), # 5: yes
SizeArg("G", two * eight * s0 * s1), # 6: yes
]
).divisible_by_16,
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
if HAS_CPU or HAS_CUDA:
run_tests("sympy")