blob: aaef65650a172124537c7de82232140b07e2adbd [file] [log] [blame]
# Owner(s): ["module: inductor"]
import functools
import re
import sys
import unittest
from importlib.machinery import SourceFileLoader
from pathlib import Path
from unittest import mock
import torch
import torch.nn as nn
from torch import _inductor as inductor
from torch._dynamo import compiled_autograd
from torch._dynamo.test_case import run_tests, TestCase
from torch._dynamo.utils import counters
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
# note: these tests are not run on windows due to inductor_utils.HAS_CPU
def compiler_fn(gm):
"""Same as torch.compile() but counts number of compiles"""
def inner_compiler(gm_, example_inputs_):
counters["compiled_autograd"]["compiles"] += 1
return inductor.compile(gm_, example_inputs_)
return torch.compile(gm, backend=inner_compiler, fullgraph=True, dynamic=True)
# TODO(jansel): hooks as lambdas creates recompiles in dynamo, we should fix that
def hook1(grad):
return grad * 2
def hook2(grads):
return (grads[0] + 1,)
def hook3(gI, gO):
return (torch.sin(gI[0]) + gO[0],)
class TestCompiledAutograd(TestCase):
def check_output_and_recompiles(self, fn, count=1):
with torch.autograd.set_multithreading_enabled(False):
torch._dynamo.reset()
counters["compiled_autograd"].clear()
torch.manual_seed(123)
expected = list(fn())
torch.manual_seed(123)
with compiled_autograd.enable(compiler_fn):
actual = list(fn())
self.assertEqual(expected, actual)
self.assertEqual(counters["compiled_autograd"]["captures"], count)
self.assertEqual(counters["compiled_autograd"]["compiles"], count)
def test_basic(self):
def fn():
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
x = torch.randn([2, 4])
result = model(x).sum()
result.backward()
yield model[0].weight.grad
yield model[0].bias.grad
yield model[2].weight.grad
yield model[2].bias.grad
self.check_output_and_recompiles(fn)
def test_cache_hit(self):
def fn():
for _ in range(3):
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
x = torch.randn([2, 4])
result = model(x).sum()
result.backward()
yield model[0].weight.grad
yield model[0].bias.grad
yield model[2].weight.grad
yield model[2].bias.grad
self.check_output_and_recompiles(fn)
def test_tensor_grad_hook1(self):
def fn():
for _ in range(3):
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
x = torch.randn([2, 4])
model[0].weight.register_hook(hook1)
result = model(x).sum()
result.backward()
yield model[0].weight.grad
yield model[0].bias.grad
self.check_output_and_recompiles(fn)
def test_tensor_grad_hook2(self):
def fn():
for _ in range(3):
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
x = torch.randn([1, 4])
result = model(x).sum()
result.grad_fn.register_prehook(hook2)
result.backward()
yield model[0].weight.grad
yield model[0].bias.grad
self.check_output_and_recompiles(fn)
def test_tensor_grad_hook3(self):
def fn():
for _ in range(3):
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
x = torch.randn([1, 4])
result = model(x).sum()
result.grad_fn.register_hook(hook3)
result.backward()
yield model[0].weight.grad
yield model[0].bias.grad
self.check_output_and_recompiles(fn)
def test_torch_compile(self):
def fn():
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.Sigmoid(),
)
opt_model = torch.compile(model, fullgraph=True)
for _ in range(3):
x = torch.randn([1, 4])
result = opt_model(x).sum()
result.backward()
yield model[0].weight.grad
yield model[0].bias.grad
model.zero_grad()
self.check_output_and_recompiles(fn)
def test_implicit_add(self):
def fn():
y = torch.randn(1, 4, requires_grad=True)
def model(x):
# y is used multiple times, gradients get added
return torch.sigmoid(x * y + torch.sin(y) + torch.cos(y))
for _ in range(3):
x = torch.randn([1, 4])
result = model(x).sum()
result.backward()
yield result
yield y.grad
y.grad = None
self.check_output_and_recompiles(fn)
def test_output_nodes(self):
def fn():
y = torch.randn(1, 4, requires_grad=True)
z = torch.randn(1, 4, requires_grad=True)
def model(x):
return torch.sigmoid(x * z + torch.sin(y) + torch.cos(y))
for _ in range(3):
x = torch.randn([1, 4])
result = model(x).sum()
gy, gz = torch.autograd.grad(result, [y, z])
assert y.grad is None
assert z.grad is None
yield gy
yield gz
self.check_output_and_recompiles(fn)
def test_dynamic_shapes(self):
def fn():
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
opt_model = torch.compile(model, dynamic=True)
for b in range(10, 100, 10):
x = torch.randn([b, 4])
result = opt_model(x).sum()
result.backward()
yield model[0].weight.grad
yield model[0].bias.grad
yield model[2].weight.grad
yield model[2].bias.grad
model.zero_grad()
# TODO(jansel): we should be able to get this count to 1
self.check_output_and_recompiles(fn, count=2)
def test_accumulate_without_zero(self):
def fn():
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
opt_model = torch.compile(model, dynamic=True)
for _ in range(10):
x = torch.randn([10, 4])
result = opt_model(x).sum()
result.backward()
yield model[0].weight.grad.clone()
yield model[0].bias.grad.clone()
yield model[2].weight.grad.clone()
yield model[2].bias.grad.clone()
self.check_output_and_recompiles(fn, count=2)
def test_inplace_grad_update(self):
def fn():
model = torch.nn.Sequential(
torch.nn.Linear(4, 4),
torch.nn.ReLU(),
)
opt_model = torch.compile(model, dynamic=True)
for _ in range(10):
w_grad = torch.rand_like(model[0].weight)
b_grad = torch.rand_like(model[0].bias)
model[0].weight.grad = w_grad
model[0].bias.grad = b_grad
x = torch.randn([10, 4])
result = opt_model(x).sum()
result.backward()
assert model[0].weight.grad is w_grad
assert model[0].bias.grad is b_grad
yield w_grad.clone()
yield b_grad.clone()
self.check_output_and_recompiles(fn, count=1)
@unittest.skipIf(not HAS_CUDA, "requires cuda")
def test_issue106555(self):
DEVICE = torch.device("cuda:0")
NUM_FEATURES = 256
def bias_sigmoid_mul(x1, x2, bias):
x2 = torch.sigmoid(x2 + bias)
y = x1 * x2
return y
bias_sigmoid_mul_jit = torch.compile(bias_sigmoid_mul)
class ModuleWithJit(nn.Module):
def __init__(self):
super().__init__()
self.linear_1 = nn.Linear(NUM_FEATURES, NUM_FEATURES, bias=True)
self.linear_2 = nn.Linear(NUM_FEATURES, NUM_FEATURES, bias=False)
self.linear_2_bias = nn.Parameter(torch.zeros(NUM_FEATURES))
def forward(self, input_tensor):
x1 = self.linear_1(input_tensor)
x2 = self.linear_2(input_tensor)
output = bias_sigmoid_mul_jit(x1, x2, self.linear_2_bias)
return output
class Model(nn.Module):
def __init__(self):
super().__init__()
self.module_with_jit_1 = ModuleWithJit()
self.module_with_jit_2 = ModuleWithJit()
def forward(self, x, gradient_checkpointing: bool):
if gradient_checkpointing:
y = torch.utils.checkpoint.checkpoint(
self._forward, x, use_reentrant=True
)
else:
y = self._forward(x)
return y
def _forward(self, x):
x = x + self.module_with_jit_1(x)
x = x + self.module_with_jit_2(x.transpose(-2, -3)).transpose(-2, -3)
return x
torch.cuda.set_device(device=DEVICE)
torch.manual_seed(1234567890)
model = Model()
model.train()
model.to(device=DEVICE)
model_parameters = list(model.parameters())
torch.manual_seed(1234567890)
input_tensor = torch.randn(1, 128, 256, NUM_FEATURES).to(device=DEVICE)
input_tensor.requires_grad = True
target_tensor = torch.randn(1, 128, 256, NUM_FEATURES).to(
dtype=input_tensor.dtype, device=DEVICE
)
for iteration in range(10):
for param in model_parameters:
param.grad = None
output_tensor = model(
x=input_tensor.clone(),
gradient_checkpointing=True,
)
loss = torch.mean(torch.abs(target_tensor - output_tensor))
loss.backward()
def test_keep_graph_simple(self):
x = torch.tensor([2.0], requires_grad=True)
y = x**2
# First backward pass; keep the computation graph
y.backward(retain_graph=True)
self.assertEqual(x.grad, torch.Tensor([4])) # dy/dx at x=2 is 4
# Note - this will run under both the eager and compiled regime.
def fn():
# Reset the gradients
x.grad = torch.tensor([0.0])
# Second and Third backward pass; keep the computation graph
y.backward(retain_graph=True)
self.assertEqual(x.grad, torch.Tensor([4])) # dy/dx at x=2 is 4
return x.grad
self.check_output_and_recompiles(fn, count=1)
def test_keep_graph_usage_after_compiled(self):
x = torch.tensor([2.0], requires_grad=True)
y = x**2
# First backward pass; keep the computation graph
def eager_check():
y.backward(retain_graph=True)
self.assertEqual(x.grad, torch.Tensor([4])) # dy/dx at x=2 is 4
x.grad = torch.tensor([0.0])
eager_check()
for i in range(0, 5):
with compiled_autograd.enable(compiler_fn):
eager_check()
eager_check()
def load_test_module(name):
testdir = Path(__file__).absolute().parent.parent
with mock.patch("sys.path", [*sys.path, str(testdir)]):
return SourceFileLoader(
name, str(testdir / f"{name.replace('.', '/')}.py")
).load_module()
test_autograd = load_test_module("test_autograd")
class EagerAutogradTests(TestCase):
@classmethod
def add_test(cls, name, fn):
@functools.wraps(fn)
def wrapped(self: EagerAutogradTests):
torch._dynamo.reset()
with compiled_autograd.enable(compiler_fn):
return fn(self)
if not callable(fn):
return
elif known_failures_re.match(name) or name in known_failing_tests:
setattr(cls, name, unittest.expectedFailure)
elif name.startswith("test"):
setattr(cls, name, wrapped)
else:
setattr(cls, name, fn)
# These groups of tests aren't supported yet
known_failures_re = re.compile(
r"^test_(sparse|profiler|gradcheck|checkpoint|named_tensor)"
)
# Bugs needing investigation:
known_failing_tests = {
"test_current_graph_task_execution_order", # torch._dynamo.exc.TorchRuntimeError: Failed running call_function <
"test_input_buffer_accum", # RuntimeError: Cannot access data pointer of Tensor that doesn't have storage
"test_graph_save_on_cpu_cuda", # AssertionError: 0 not greater than 0
"test_graph_save_on_cpu", # torch._dynamo.exc.BackendCompilerFailed: backend='inner_compiler' raised:
"test_reentrant_with_leaf_variable_hook", # torch._dynamo.exc.Unsupported: inline in skipfiles: RemovableHandle.
"test_reentrant_with_non_leaf_variable_hook", # torch._dynamo.exc.Unsupported: inline in skipfiles: RemovableHan
"test_saved_variable_saved_original_inplace_detach", # AssertionError: RuntimeError not raised
"test_saving_variable_to_disk", # Cannot call numel() on tensor with symbolic sizes/strides
"test_setitem_mask", # torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: It appears that you're
"test_tensor_hooks_inplace_over_view", # torch._dynamo.exc.Unsupported: call_function UserDefinedClassVariable() [] {}
"test_tensor_hooks_inplace", # torch._dynamo.exc.Unsupported: call_function UserDefinedClassVariable() [] {}
"test_wrapped_number_saved_variable_hooks", # RuntimeError: this hook should not be called
"test_accumulate_grad_posthooks_can_observe_tensor_prehook", # data dependent operator: aten.allclose.default
"test_accumulate_grad_tensor_reference", # backend='inner_compiler' raised:
"test_anomaly_detect_nan", # type object 'MyFunc' has no attribute '_compiled_autograd_key'
"test_anomaly_grad_warnings", # "one of the variables needed for gradient computation has been modified by an...
"test_autograd_inplace_views_cross_dtype", # view_fn not supported by compiled autograd
"test_autograd_multiple_views_python", # type object 'ComplexView' has no attribute '_compiled_autograd_key'
"test_autograd_node_isinstance", # type object 'Func' has no attribute '_compiled_autograd_key'
"test_autograd_python_custom_function_inplace", # type object 'MyAdder' has no attribute '_compiled_autograd_key'
"test_backward_with_inputs", # specifying inputs= with .backward() not yet implemented for compiled autograd
"test_callback_adds_callback", # type object 'MyFunc' has no attribute '_compiled_autograd_key'
"test_current_node", # TorchDispatchMode not yet implemented for compiled autograd
"test_custom_function_cycle", # type object 'MyFn' has no attribute '_compiled_autograd_key'
"test_custom_function_error", # type object 'BadBw' has no attribute '_compiled_autograd_key'
"test_custom_function_exception", # "Simulate error on backward pass" does not match "type object 'SimulateBackwa...
"test_custom_function_non_tensor_inputs_outputs", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_custom_function_save_for_forward", # type object 'Func' has no attribute '_compiled_autograd_key'
"test_custom_function_saved_tensors", # type object 'MyFn' has no attribute '_compiled_autograd_key'
"test_custom_function_setup_context_multi_input", # type object 'MyReshape' has no attribute '_compiled_autograd_key'
"test_custom_function_setup_context_multi_output", # type object 'MySquare' has no attribute '_compiled_autograd_key'
"test_custom_function_setup_context_simple", # type object 'MySquare' has no attribute '_compiled_autograd_key'
"test_deep_reentrant", # type object 'DeepReentrant' has no attribute '_compiled_autograd_key'
"test_dep_nograd", # type object 'F2' has no attribute '_compiled_autograd_key'
"test_dont_materialize_grads", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_function_returns_input", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_function_returns_undefined_tensor", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_grad_batched_grad", # Cannot access storage of BatchedTensorImpl
"test_grad_fn_prehooks", # type object 'Mul2' has no attribute '_compiled_autograd_key'
"test_grad_fn_prehooks_multiple_outputs", # type object 'DoubleMul2' has no attribute '_compiled_autograd_key'
"test_grad_fn_prehooks_remove_hooks", # type object 'Mul2' has no attribute '_compiled_autograd_key'
"test_grad_mode_restored_reentrant", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_grad_unreachable_discovery", # specifying inputs= with .backward() not yet implemented for compiled autograd
"test_hook_none", # type object 'NoneGradientFunction' has no attribute '_compiled_autograd_key'
"test_index_backward_does_not_save_tensor", # dynamic shape operator: aten.nonzero.default
"test_invalid_gradients", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_mark_non_differentiable_mixed", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_materialize_grads", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_naughty_anomaly_access", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_no_grad_copy", # type object 'NonContGradFunc' has no attribute '_compiled_autograd_key'
"test_post_accumulate_grad_hook_e2e", # tensor_post_acc_grad_hooks not implemented for compiled autograd
"test_post_accumulate_grad_hook_gets_cleaned_up", # tensor_post_acc_grad_hooks not implemented for compiled autograd
"test_post_accumulate_grad_hook_multiple_hooks", # tensor_post_acc_grad_hooks not implemented for compiled autograd
"test_post_accumulate_grad_hook_multiple_tensors", # tensor_post_acc_grad_hooks not implemented for compiled autograd
"test_post_accumulate_grad_hook_ordering", # tensor_post_acc_grad_hooks not implemented for compiled autograd
"test_post_accumulate_grad_hook_returns_not_None", # "hooks should return None." does not match
"test_reentrant_child_error", # "Simulate error" does not match "type object 'ReentrantFunc' has no attribute...
"test_reentrant_priority", # type object 'Reentrant' has no attribute '_compiled_autograd_key'
"test_reentrant_with_callbacks_both_depths", # type object 'MyReentrantFunc' has no attribute '_compiled_autograd_key'
"test_reentrant_with_callbacks_depth_0", # type object 'MyReentrantFunc' has no attribute '_compiled_autograd_key'
"test_reentrant_with_callbacks_depth_1", # type object 'MyReentrantFunc' has no attribute '_compiled_autograd_key'
"test_retain_grad_cycle", # retains_grad_hooks not implemented for compiled autograd
"test_retain_grad_inplace", # retains_grad_hooks not implemented for compiled autograd
"test_retain_grad_inplace_over_view", # retains_grad_hooks not implemented for compiled autograd
"test_retains_grad_can_always_observe_tensor_prehook", # retains_grad_hooks not implemented for compiled autograd
"test_retains_grad_inplace_multiple_outputs", # retains_grad_hooks not implemented for compiled autograd
"test_return_leaf", # type object 'Identity' has no attribute '_compiled_autograd_key'
"test_return_leaf_inplace", # type object 'Inplace' has no attribute '_compiled_autograd_key'
"test_save_none_for_backward", # type object 'MyFn' has no attribute '_compiled_autograd_key'
"test_save_output_nr", # type object 'TestFn' has no attribute '_compiled_autograd_key'
"test_saved_tensor_hooks_custom_function_intermediates", # type object 'Func' has no attribute '_compiled_autograd_key'
"test_saved_variables_deprecated", # type object 'MyFunction' has no attribute '_compiled_autograd_key'
"test_set_materialize_non_diff_grads", # type object 'Func' has no attribute '_compiled_autograd_key'
"test_setup_context_when_forward_has_default_args", # type object 'PowFunction' has no attribute '_compiled_autograd_key'
"test_simple_reentrant", # type object 'Reenter' has no attribute '_compiled_autograd_key'
"test_tensor_hooks_inplace_multiple_outputs", # type object 'DoubleMul' has no attribute '_compiled_autograd_key'
"test_to_sparse_backward", # backend='inner_compiler' raised:
"test_too_many_grads", # type object 'MyFn' has no attribute '_compiled_autograd_key'
"test_accumulate_grad", # RuntimeError: compiled_autograd does not support create_graph
"test_anomaly_assign_parent_cleanup", # RuntimeError: compiled_autograd does not support create_graph
"test_anomaly_mode_no_check_nan", # RuntimeError: compiled_autograd does not support AnomalyMode
"test_autograd_simple_views_python", # AttributeError: type object 'IdOneOutput' has no attribute '_compiled_autograd_key'
"test_backward_create_graph_warns", # RuntimeError: compiled_autograd does not support create_graph
"test_backward_with_nonleaf_inputs", # RuntimeError: compiled_autograd does not support create_graph
"test_create_graph_and_full_backward_hook_cycle", # RuntimeError: compiled_autograd does not support create_graph
"test_current_graph_task_id", # torch._dynamo.exc.Unsupported: torch.* op returned non-Tensor int
"test_custom_autograd_no_early_free", # AttributeError: type object 'Double' has no attribute '_compiled_autograd_key'
"test_custom_autograd_repeated_grad_grad", # RuntimeError: compiled_autograd does not support create_graph
"test_custom_function_forward_mode_forward_is_no_op", # AttributeError: type object 'MyFn'
"test_custom_function_forward_mode_inplace_checks", # AttributeError: type object 'InplaceFn'
"test_custom_function_forward_mode_view_checks", # AttributeError: type object 'ViewFn'
"test_custom_function_forward_mode_wrong_formula", # AttributeError: type object 'UserFn'
"test_default_saved_variable_hooks_double_backward", # RuntimeError: compiled_autograd does not support create_graph
"test_full_backward_hook_double_backward", # RuntimeError: compiled_autograd does not support create_graph
"test_function", # RuntimeError: compiled_autograd does not support create_graph
"test_grad", # RuntimeError: compiled_autograd does not support create_graph
"test_grad_materialize_grads", # RuntimeError: compiled_autograd does not support create_graph
"test_grad_nonleaf", # RuntimeError: compiled_autograd does not support create_graph
"test_grad_nonleaf_many_outputs", # RuntimeError: compiled_autograd does not support create_graph
"test_hessian_vector", # RuntimeError: compiled_autograd does not support create_graph
"test_hook_closure_cycle_use_custom_function_True_use_tensor_hook_False", # AttributeError: type object
"test_hook_closure_cycle_use_custom_function_True_use_tensor_hook_True", # AttributeError: type object
"test_hook_edge_case_when_called_with_grad", # RuntimeError: specifying inputs= with .backward() not yet
"test_hooks", # torch._dynamo.exc.Unsupported: inline in skipfiles
"test_inplace_on_view_backward", # RuntimeError: compiled_autograd does not support create_graph
"test_lobpcg", # AttributeError: type object 'LOBPCGAutogradFunction' has no attribute '_compiled_autograd_key'
"test_multi_grad_hooks", # RuntimeError: specifying inputs= with .backward() not yet implemented for compiled autograd
"test_naughty_autograd_function_stashing_ctx", # AttributeError: type object 'Id' has no attribute '_compiled_autograd_key'
"test_nested_anomaly_detect_nan", # RuntimeError: compiled_autograd does not support create_graph
"test_nested_anomaly_printstack_cleanup", # RuntimeError: compiled_autograd does not support create_graph
"test_no_grad_copy_sparse", # AttributeError: type object 'MyFunc' has no attribute '_compiled_autograd_key'
"test_once_differentiable", # RuntimeError: compiled_autograd does not support create_graph
"test_prehook_ordering", # RuntimeError: specifying inputs= with .backward() not yet implemented for compiled autograd
"test_retain_grad", # RuntimeError: retains_grad_hooks not implemented for compiled autograd
"test_return_duplicate", # AttributeError: type object 'DoubleDuplicate' has no attribute '_compiled_autograd_key'
"test_return_duplicate_inplace", # AttributeError: type object 'DoubleInplace' has no attribute '_compiled_autograd_key'
"test_saved_variable_packing_unpacking_saved_original_with_hooks", # RuntimeError: compiled_autograd
"test_select_sum", # torch.autograd.gradcheck.GradcheckError: While computing batched gradients
"test_unrelated_inputs", # torch.autograd.gradcheck.GradcheckError: While computing batched gradients
"test_will_engine_execute_node", # RuntimeError: specifying inputs= with .backward() not yet implemented for compiled autograd
"test_backward_to_node", # RuntimeError: specifying inputs= with .backward() not yet implemented for compiled autograd
"test_callback_propagates_errors_from_device_thread", # AssertionError: "blah" does not match "call_method UserDefinedObj..."
}
if not HAS_CUDA:
# Found Tesla M60 which is too old to be supported by the triton GPU compiler
known_failing_tests.add("test_type_conversions")
for name, fn in test_autograd.TestAutograd.__dict__.items():
EagerAutogradTests.add_test(name, fn)
if __name__ == "__main__":
if HAS_CPU:
run_tests(needs="filelock")