blob: 6740108298fa9ca9d688607ae139016fb41595dd [file] [log] [blame]
# Owner(s): ["module: inductor"]
import unittest
import torch
from torch._inductor.ir import Pointwise
from torch._inductor.lowering import register_lowering
from torch._inductor.virtualized import ops
from torch.testing._internal.common_utils import TestCase as TorchTestCase
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
# These tests check issues for lowerings that aren't in the main pytorch repo
class TestCustomLowering(TorchTestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.test_inductor_ops = torch.library.Library("test_inductor_ops", "DEF")
cls.impl_cuda = torch.library.Library("test_inductor_ops", "IMPL", "CUDA")
cls.impl_meta = torch.library.Library("test_inductor_ops", "IMPL", "Meta")
cls._register_jagged_to_padded_dense()
@classmethod
def tearDown(cls):
super().tearDownClass()
@classmethod
def _register_jagged_to_padded_dense(cls):
# Approximation of fbgemm.jagged_to_padded_dense_forward
cls.test_inductor_ops.define(
"jagged_to_padded_dense(Tensor input, Tensor offsets, SymInt max_seq_len, Scalar pad_value) -> Tensor"
)
def j2pd_meta(inp, offsets, max_seq_len, pad_value):
return torch.empty(
(offsets.shape[0] - 1, max_seq_len, inp.shape[1]),
device=inp.device,
dtype=inp.dtype,
)
def j2pd_cuda(inp, offsets, max_seq_len, pad_value):
res = torch.full(
(offsets.shape[0] - 1, max_seq_len, inp.shape[1]),
pad_value,
device=inp.device,
dtype=inp.dtype,
)
for b in range(offsets.shape[0] - 1):
for r in range(offsets[b + 1] - offsets[b]):
res[b][r] = inp[offsets[b] + r]
return res
def j2pd_lowering(inp, offsets, max_seq_len, pad_value):
offsets_loader = offsets.make_loader()
inp_loader = inp.make_loader()
jagged_len = inp.get_size()[0]
offsets_dtype = offsets.get_dtype()
def inner_fn(index):
batch_idx, seq_idx, emb_idx = index
begin_idx = ops.indirect_indexing(
offsets_loader([batch_idx]),
jagged_len + 1,
)
end_idx = offsets_loader([batch_idx + 1])
jagged_idx = begin_idx + seq_idx
return ops.masked(
ops.lt(
ops.index_expr(jagged_idx, offsets_dtype),
end_idx,
),
lambda: inp_loader([jagged_idx, emb_idx]),
pad_value,
)
return Pointwise.create(
device=inp.get_device(),
dtype=inp.get_dtype(),
inner_fn=inner_fn,
ranges=[offsets.get_size()[0] - 1, max_seq_len, inp.get_size()[1]],
)
register_lowering(
torch.ops.test_inductor_ops.jagged_to_padded_dense, type_promotion_kind=None
)(j2pd_lowering)
cls.impl_meta.impl("jagged_to_padded_dense", j2pd_meta)
cls.impl_cuda.impl("jagged_to_padded_dense", j2pd_cuda)
@unittest.skipIf(not HAS_CUDA, "CUDA needed")
def test_jagged_to_padded_dense_sanity_cuda(self):
def fn(inp, offsets, max_seq_len):
return torch.ops.test_inductor_ops.jagged_to_padded_dense(
inp, offsets, max_seq_len, 60.0
)
inp = torch.rand((9, 96), device="cuda")
offsets = torch.tensor([0, 2, 5, 9], dtype=torch.int32, device="cuda")
max_seq_len = 4
res = fn(inp, offsets, max_seq_len)
self.assertEqual(inp[0], res[0][0])
self.assertEqual(inp[1], res[0][1])
self.assertEqual(inp[2], res[1][0])
self.assertEqual(inp[3], res[1][1])
self.assertEqual(inp[5], res[2][0])
self.assertEqual(inp[8], res[2][3])
fn_opt = torch.compile(fn)
self.assertEqual(
fn(inp, offsets, max_seq_len), fn_opt(inp, offsets, max_seq_len)
)
@unittest.skipIf(not HAS_CUDA, "CUDA needed")
def test_jagged_to_padded_dense_zero_size(self):
# Previously, the masking was being completely stripped for the
# masked load of the input value. That would lead to an IMA
# because cuda was trying to read index 0 of a zero-size tensor.
def fn(inp, offsets, max_seq_len):
inp = torch.bmm(inp, torch.ones((1, 96, 1), device="cuda")).view((0, 1))
return torch.ops.test_inductor_ops.jagged_to_padded_dense(
inp, offsets, max_seq_len, 60.0
)
inp = torch.rand((1, 0, 96), device="cuda")
offsets = torch.zeros(1025, device="cuda", dtype=torch.int32)
max_seq_len = 20
fn_opt = torch.compile(fn)
self.assertEqual(
fn(inp, offsets, max_seq_len), fn_opt(inp, offsets, max_seq_len)
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
if HAS_CPU or HAS_CUDA:
run_tests(needs="filelock")