blob: b39f15c4f529d14a34fbad48d1daac4a3c5f97d5 [file] [log] [blame]
# Owner(s): ["module: inductor"]
import functools
import unittest
import torch
from torch import Tensor
from torch._dynamo.test_case import run_tests, TestCase
from torch._inductor import utils
from torch.testing._internal.common_cuda import SM90OrLater
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
TEST_WITH_ROCM,
)
from torch.testing._internal.inductor_utils import HAS_CUDA
torch.set_float32_matmul_precision("high")
# define the e4m3/e5m2 constants
E4M3_MAX_POS = 448.0
E5M2_MAX_POS = 57344.0
def _to_fp8_saturated(x: Tensor, float8_dtype: torch.dtype) -> Tensor:
# The default behavior in PyTorch for casting to `float8_e4m3fn`
# and `e5m2` is to not saturate. In this context, we should saturate.
# A common case where we want to saturate is when the history of a
# tensor has a maximum value of `amax1`, and the current amax value
# is `amax2`, where `amax1 < amax2`. This is common when using delayed
# scaling.
if float8_dtype == torch.float8_e4m3fn:
x = x.clamp(min=-1 * E4M3_MAX_POS, max=E4M3_MAX_POS)
else:
x = x.clamp(min=-1 * E5M2_MAX_POS, max=E5M2_MAX_POS)
return x.to(float8_dtype)
@instantiate_parametrized_tests
class TestFP8Types(TestCase):
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
@parametrize("dtype", (torch.float16, torch.bfloat16))
def test_eager_fallback(self, dtype: torch.dtype):
weight_shape = (32, 16)
def fp8_matmul_unwrapped(x):
a_scale = torch.Tensor([1.0]).to(device="cuda")
b_scale = torch.Tensor([1.0]).to(device="cuda")
output_scale = None
input_bias = torch.rand(32, device="cuda", dtype=dtype)
weight = torch.rand(*weight_shape, device="cuda", dtype=dtype).T.to(
torch.float8_e4m3fn
)
a_inverse_scale = 1 / a_scale
b_inverse_scale = 1 / b_scale
output, updated_amax = torch._scaled_mm(
x,
weight,
bias=input_bias,
out_dtype=dtype,
scale_a=a_inverse_scale,
scale_b=b_inverse_scale,
scale_result=output_scale,
)
return output
compiled_fp8_matmul = torch.compile(
fp8_matmul_unwrapped, backend="inductor", dynamic=True
)
x_shape = (16, 16)
x = torch.rand(*x_shape, device="cuda", dtype=dtype).to(torch.float8_e4m3fn)
y_fp8 = compiled_fp8_matmul(x)
x_shape = (15, 16)
x = torch.rand(*x_shape, device="cuda", dtype=dtype).to(torch.float8_e4m3fn)
y_fp8 = compiled_fp8_matmul(x)
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
@parametrize("dtype", (torch.float16, torch.bfloat16, torch.float))
@parametrize("shape", ("15,3,13", "4,2048,4096"))
def test_valid_cast(self, dtype: torch.dtype, shape: str):
def fp8_cast(x):
y0 = x.to(dtype=torch.float8_e4m3fn).to(dtype)
y1 = x.to(dtype=torch.float8_e5m2).to(dtype)
return y0, y1
compiled_fp8_cast = torch.compile(fp8_cast, backend="inductor", dynamic=True)
shape = [int(dim) for dim in shape.split(",")]
x = torch.rand(*shape, device="cuda", dtype=dtype)
y0_fp8, y1_fp8 = compiled_fp8_cast(x)
torch.testing.assert_close(y0_fp8, x, rtol=5e-1, atol=5e-1)
torch.testing.assert_close(y1_fp8, x, rtol=5e-1, atol=5e-1)
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
def test_bad_cast(self):
def fp8_cast(x, dtype):
return x.to(dtype=dtype)
compiled_fp8_cast = torch.compile(fp8_cast, backend="inductor", dynamic=True)
x_shape = (16, 16, 16)
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
"Conversions between float8_e5m2 and float8_e4m3fn is not supported!",
):
x = torch.rand(*x_shape, device="cuda").to(dtype=torch.float8_e4m3fn)
y = compiled_fp8_cast(x, torch.float8_e5m2)
with self.assertRaisesRegex(
torch._dynamo.exc.BackendCompilerFailed,
"Conversions between float8_e5m2 and float8_e4m3fn is not supported!",
):
x = torch.rand(*x_shape, device="cuda").to(dtype=torch.float8_e5m2)
y = compiled_fp8_cast(x, torch.float8_e4m3fn)
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
@parametrize("src_dtype", (torch.float16, torch.bfloat16, torch.float))
@parametrize("dst_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("16,16,16", "4,2048,4096"))
def test_to_fp8_saturated(
self, src_dtype: torch.dtype, dst_dtype: torch.dtype, shape: str
):
def fp8_saturated(x, dtype):
return _to_fp8_saturated(x, dtype)
compiled_fp8_cast = torch.compile(
fp8_saturated, backend="inductor", dynamic=True
)
shape = [int(dim) for dim in shape.split(",")]
x = torch.rand(*shape, device="cuda", dtype=src_dtype)
y_compiled = compiled_fp8_cast(x, dst_dtype)
y = fp8_saturated(x, dst_dtype)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=5e-1, atol=5e-1)
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096"))
def test_amax_fp8_quant(self, float8_dtype: torch.dtype, shape: str):
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def amax_fp8(x: Tensor, scale: Tensor):
y = torch.amax(torch.abs(x))
y_scaled = y.to(dtype=torch.float) * scale
bits_fp8 = _to_fp8_saturated(y_scaled, float8_dtype)
return bits_fp8
compiled_amax_fp8_quant = torch.compile(amax_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device="cuda", dtype=torch.half)
scale = torch.tensor(0.2, device="cuda", dtype=torch.float)
y_compiled = compiled_amax_fp8_quant(x, scale)
y = amax_fp8(x, scale)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-2, atol=1e-2)
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096"))
def test_amax_along_with_fp8_quant(self, float8_dtype: torch.dtype, shape: str):
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def amax_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor):
amax_buffer.fill_(torch.amax(torch.abs(x)))
x_scaled = x.to(dtype=torch.float) * scale
bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype)
return bits_fp8
compiled_amax_fp8_quant = torch.compile(amax_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device="cuda", dtype=torch.half)
scale = torch.tensor(1.0, device="cuda", dtype=torch.float)
amax_buffer_compiled = torch.zeros((1), device="cuda", dtype=torch.half)
y_compiled = compiled_amax_fp8_quant(x, scale, amax_buffer_compiled)
amax_buffer = torch.zeros((1), device="cuda", dtype=torch.half)
y = amax_fp8(x, scale, amax_buffer)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-1, atol=1e-1)
torch.testing.assert_close(
amax_buffer_compiled, amax_buffer, rtol=1e-2, atol=1e-2
)
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("amax_keep_dim", (True, False))
@parametrize("shape", ("1,1,15", "1,10,15", "1,10,512", "1,10,4096", "4,2048,4096"))
def test_layernorm_fp8_quant(
self, float8_dtype: torch.dtype, amax_keep_dim: bool, shape: str
):
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def ln_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor):
x = torch.nn.functional.layer_norm(
x.to(dtype=torch.float),
[hidden_size],
weight=None,
bias=None,
eps=1e-05,
)
amax_buffer.fill_(
torch.amax(torch.abs(x), keepdim=amax_keep_dim).reshape(-1)[0]
)
x_scaled = x * scale
bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype)
return bits_fp8
compiled_ln_fp8_quant = torch.compile(ln_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device="cuda", dtype=torch.half)
scale = torch.tensor(0.2, device="cuda", dtype=torch.float)
amax_buffer_compiled = torch.zeros((1), device="cuda", dtype=torch.half)
y_compiled = compiled_ln_fp8_quant(x, scale, amax_buffer_compiled)
amax_buffer = torch.zeros((1), device="cuda", dtype=torch.half)
y = ln_fp8(x, scale, amax_buffer)
torch.testing.assert_close(y_compiled.half(), y.half(), rtol=1e-1, atol=1e-1)
torch.testing.assert_close(
amax_buffer_compiled, amax_buffer, rtol=1e-2, atol=1e-2
)
@unittest.skipIf(TEST_WITH_ROCM, "FP8 is not supported on ROCM")
@unittest.skipIf(not SM90OrLater, "FP8 is only supported on H100+")
@parametrize("float8_dtype", (torch.float8_e4m3fn, torch.float8_e5m2))
@parametrize("shape", ("4,2048,4096",))
def test_layernorm_fp8_quant_benchmark(
self,
float8_dtype: torch.dtype,
shape: str,
):
shape = [int(dim) for dim in shape.split(",")]
batch_size, sequence_length, hidden_size = shape
def ln(x: Tensor):
x = torch.nn.functional.layer_norm(
x.to(dtype=torch.float),
[hidden_size],
weight=None,
bias=None,
eps=1e-05,
)
return x
def ln_fp8(x: Tensor, scale: Tensor, amax_buffer: Tensor):
x = torch.nn.functional.layer_norm(
x.to(dtype=torch.float),
[hidden_size],
weight=None,
bias=None,
eps=1e-05,
)
amax_buffer.fill_(torch.amax(torch.abs(x)))
x_scaled = x * scale
bits_fp8 = _to_fp8_saturated(x_scaled, float8_dtype)
return bits_fp8
compiled_ln_fp8_quant = torch.compile(ln_fp8, backend="inductor")
x_shape = (batch_size, sequence_length, hidden_size)
x = torch.rand(*x_shape, device="cuda", dtype=torch.half)
scale = torch.tensor(0.2, device="cuda", dtype=torch.float)
amax_buffer_compiled = torch.zeros((1), device="cuda", dtype=torch.half)
amax_buffer = torch.zeros((1), device="cuda", dtype=torch.half)
_ = compiled_ln_fp8_quant(x, scale, amax_buffer_compiled)
compiled_latency = utils.do_bench_using_profiling(
functools.partial(compiled_ln_fp8_quant, x, scale, amax_buffer_compiled)
)
eager_latency = utils.do_bench_using_profiling(
functools.partial(ln_fp8, x, scale, amax_buffer)
)
compiled_ln = torch.compile(ln, backend="inductor")
_ = compiled_ln(x)
ln_latency = utils.do_bench_using_profiling(functools.partial(compiled_ln, x))
print(
f"Config: {float8_dtype=}, {shape=}. "
f"Benchmark results: Inductor: {compiled_latency}ms, Eager: {eager_latency}ms, "
f"LN only Inductor: {ln_latency}ms."
)
if __name__ == "__main__":
if HAS_CUDA:
run_tests()