blob: 2f740836ab71876c52ed54fb68b548b535198536 [file] [log] [blame]
# Owner(s): ["module: inductor"]
import sympy
from torch._inductor.codegen.cpp import cexpr
from torch._inductor.codegen.triton import texpr
from torch._inductor.codegen.wrapper import pexpr
from torch._inductor.sizevars import SizeVarAllocator
from torch.testing._internal.common_utils import TestCase as TorchTestCase
from torch.utils._sympy.functions import FloorDiv, ModularIndexing
class TestIndexingSimplification(TorchTestCase):
def test_indexing_simplification(self):
sizevars = SizeVarAllocator()
i0 = sympy.Symbol("i0", integer=True)
i1 = sympy.Symbol("i1", integer=True)
i2 = sympy.Symbol("i2", integer=True)
r3 = sympy.Symbol("r3", integer=True)
var_ranges = {i0: 3136, i1: 64, i2: 32, r3: 3}
expr = (
128 * i2
+ ModularIndexing(i1, 1, 64)
+ 64 * ModularIndexing(i1 + 64 * r3, 64, 2)
)
# check that `i1//64` is removed when i1 is always less than 64,
# and the next simplificaton doesn't happen
self.assertEqual(
sizevars.simplify_with_ranges(expr, var_ranges),
i1 + 128 * i2 + 64 * ModularIndexing(r3, 1, 2),
)
# all the modular indexing should be removed when the body cant be larger than the modulus
var_ranges[r3] = 2
self.assertEqual(
sizevars.simplify_with_ranges(expr, var_ranges), i1 + 128 * i2 + 64 * r3
)
# if there are negative terms in ModularIndexing base, we cannot replace it with FloorDiv
expr = ModularIndexing(i1 - 15, 1, 64)
self.assertEqual(
sizevars.simplify_with_ranges(expr, var_ranges),
ModularIndexing(i1 - 15, 1, 64),
)
# small terms should be kept if the rest is not guaranteed to be divisible
self.assertEqual(
sizevars.simplify_with_ranges(FloorDiv(r3 + i2 + i1, 32), var_ranges),
FloorDiv(r3 + i2 + i1, 32),
)
expr = ModularIndexing(2 * i2 + r3, 1, 64)
# modular indexing is removed if base is smaller than modulo
self.assertEqual(sizevars.simplify_with_ranges(expr, var_ranges), 2 * i2 + r3)
# check the same thing but with symbolic divisor
self.assertEqual(FloorDiv(r3 * i0, r3), i0)
self.assertEqual(ModularIndexing(r3 * i0, r3, 10), ModularIndexing(i0, 1, 10))
# (10*i) % 10 is always zero and should get optimized away
self.assertEqual(
ModularIndexing(i0 + i1 * 10, 1, 10), ModularIndexing(i0, 1, 10)
)
# ((20*i)//2) % 10 is always zero and should get optimized away
self.assertEqual(
ModularIndexing(i0 + i1 * 20, 2, 10), ModularIndexing(i0, 2, 10)
)
# the same things happens with symbolic divisor
self.assertEqual(
ModularIndexing(i0 + i1 * i2 * r3, i2, r3), ModularIndexing(i0, i2, r3)
)
# if there are negative terms, we cannot optimize away zero terms due to https://github.com/openai/triton/issues/619
self.assertEqual(
ModularIndexing(-i0 + i1 * 20, 2, 10), ModularIndexing(-i0 + i1 * 20, 2, 10)
)
self.assertEqual(
ModularIndexing(-15 + i1 * 20, 2, 10), ModularIndexing(-15 + i1 * 20, 2, 10)
)
# Constant fold from divisor into base
self.assertEqual(ModularIndexing(i0 * 4, 2, 10), ModularIndexing(i0 * 2, 1, 10))
self.assertEqual(FloorDiv(i0 * 4, 2), i0 * 2)
# Nested modular indexing is correctly simplified
var_ranges = {"i1": 13, "i2": 121}
expr = ModularIndexing(ModularIndexing(121 * i1 + i2, 1, 784), 1, 28)
self.assertEqual(sizevars.simplify_with_ranges(expr, var_ranges), expr)
expr = ModularIndexing(ModularIndexing(121 * i1 + i2, 1, 784) + 1, 1, 28)
self.assertEqual(sizevars.simplify_with_ranges(expr, var_ranges), expr)
var_ranges = {"i2": 784}
expr = ModularIndexing(ModularIndexing(i2, 1, 28), 7, 4)
expected = FloorDiv(ModularIndexing(i2, 1, 28), 7)
self.assertEqual(sizevars.simplify_with_ranges(expr, var_ranges), expected)
expr = ModularIndexing(ModularIndexing(i2, 1, 28) + 1, 7, 4)
self.assertEqual(sizevars.simplify_with_ranges(expr, var_ranges), expr)
def test_indexing_join(self):
sizevars = SizeVarAllocator()
i0 = sympy.Symbol("i0", integer=True)
i1 = sympy.Symbol("i1", integer=True)
i2 = sympy.Symbol("i2", integer=True)
# join two ModularIndexing calls into one larger one when possible
expr1 = ModularIndexing(i0, 1, 32) + 32 * ModularIndexing(i0, 32, 4)
self.assertEqual(
sizevars.simplify_with_ranges(expr1, {}), ModularIndexing(i0, 1, 128)
)
# it should also work with a scale
self.assertEqual(
sizevars.simplify_with_ranges(2 * expr1, {}),
2 * ModularIndexing(i0, 1, 128),
)
# it should work when divisor is not 1
expr2 = ModularIndexing(i0, 3, 32) + 32 * ModularIndexing(i0, 32 * 3, 4)
simplified = sizevars.simplify_with_ranges(expr2, {})
self.assertEqual(simplified, ModularIndexing(i0, 3, 128))
self.assertEqual(expr2.subs({i0: 39485}), simplified.subs({i0: 39485}))
# it should not happen in this case as the modulus is wrong
expr3 = ModularIndexing(i0, 1, 30) + 32 * ModularIndexing(i0, 32, 4)
self.assertEqual(sizevars.simplify_with_ranges(expr3, {}), expr3)
# check that it also works with a modulus>1
expr4 = ModularIndexing(i0, 10, i1) + i1 * ModularIndexing(i0, i1 * 10, i2)
res0 = expr4.subs({i0: 24056, i1: 13, i2: 19})
simplified = sizevars.simplify_with_ranges(expr4, {})
res1 = simplified.subs({i0: 24056, i1: 13, i2: 19})
self.assertEqual(res0, res1)
self.assertEqual(simplified, ModularIndexing(i0, 10, i1 * i2))
# and also works with an offset
self.assertEqual(
sizevars.simplify_with_ranges(expr4 + 10, {}),
ModularIndexing(i0, 10, i1 * i2) + 10,
)
# works for ModularIndexing + FloorDiv
expr5 = 197 * FloorDiv(i0, 197) + ModularIndexing(i0, 1, 197)
simplified = sizevars.simplify_with_ranges(expr5, {})
self.assertEqual(simplified, i0)
self.assertEqual(expr5.subs({i0: 39485}), simplified.subs({i0: 39485}))
# works with a scale
self.assertEqual(
sizevars.simplify_with_ranges(2 * expr5, {}),
2 * i0,
)
# divisor != 1
expr6 = 197 * FloorDiv(i0, 197 * 3) + ModularIndexing(i0, 3, 197)
simplified = sizevars.simplify_with_ranges(expr6, {})
self.assertEqual(simplified, FloorDiv(i0, 3))
self.assertEqual(expr6.subs({i0: 39485}), simplified.subs({i0: 39485}))
class ExprPrinterTests(TorchTestCase):
def test_print_pow(self):
s1 = sympy.Symbol("foo", integer=True)
s2 = sympy.Symbol("bar", integer=True)
s3 = sympy.Symbol("baz", integer=True)
common_cases = [
# expr, result
# Test exprs.
(
s1 / (2 * s1 - 1) - 1 / (2 * s1 - 1),
lambda c, L: f"((-1{L})*({c}/((-1{L}) + (2{L}*foo)))) + (foo*({c}/((-1{L}) + (2{L}*foo))))",
),
(s1 / (s2 - s3), lambda c, L: f"foo*({c}/(bar + ((-1{L})*baz)))"),
# Test Pow directly.
(
sympy.Pow(s1 + s2, 0),
lambda _, L: f"1{L}",
), # note: simplified before _print_Pow
(
sympy.Pow(s1 + s2, -3),
lambda c, _: f"{c}/((bar + foo)*(bar + foo)*(bar + foo))",
),
]
gpu_cases = common_cases + [
(sympy.Pow(s1 + s2, 2), lambda c, L: "(bar + foo)*(bar + foo)")
]
cpu_cases = common_cases + [
(
sympy.Pow(s1 + s2, 2),
lambda c, L: "static_cast<long>((bar + foo)*(bar + foo))",
)
]
for expr, result in gpu_cases:
self.assertEqual(texpr(expr), result(1, ""))
self.assertEqual(pexpr(expr), result(1, ""))
for expr, result in cpu_cases:
self.assertEqual(cexpr(expr), result(1.0, "L")) # 1.0 for FP div
def test_print_floor(self):
for integer in [True, False]:
s1 = sympy.Symbol("s1", integer=integer)
expr = sympy.floor(s1 / 2)
if integer:
self.assertEqual(pexpr(expr), "math.floor((1/2)*s1)")
self.assertEqual(
cexpr(expr), "static_cast<long>(std::floor((1.0/2.0)*s1))"
)
else:
self.assertEqual(pexpr(expr), "math.floor((1/2)*s1)")
self.assertEqual(texpr(expr), "tl.math.floor(((1/2)*s1))")
self.assertEqual(cexpr(expr), "std::floor((1.0/2.0)*s1)")
def test_print_ceil(self):
for integer in [True, False]:
s1 = sympy.Symbol("s1", integer=integer)
expr = sympy.ceiling(s1 / 2)
if integer:
self.assertEqual(pexpr(expr), "math.ceil((1/2)*s1)")
self.assertEqual(
cexpr(expr), "static_cast<long>(std::ceil((1.0/2.0)*s1))"
)
else:
self.assertEqual(pexpr(expr), "math.ceil((1/2)*s1)")
self.assertEqual(cexpr(expr), "std::ceil((1.0/2.0)*s1)")
def test_print_floor_div(self):
for integer in [True, False]:
s1 = sympy.Symbol("s1", integer=integer)
s2 = sympy.Symbol("s2", integer=integer)
expr = FloorDiv(s1, s2)
self.assertEqual(pexpr(expr), "(s1 // s2)")
if integer:
self.assertEqual(cexpr(expr), "c10::div_floor_integer(s1, s2)")
else:
self.assertEqual(
cexpr(expr),
"c10::div_floor_floating(static_cast<double>(s1), static_cast<double>(s2))",
)
for integer in [True, False]:
s1 = sympy.Symbol("s1", integer=integer)
s2 = sympy.S(-1)
expr = FloorDiv(s1, s2)
if integer:
self.assertEqual(pexpr(expr), "(-1)*s1")
self.assertEqual(cexpr(expr), "(-1L)*s1")
else:
self.assertEqual(pexpr(expr), "(s1 // (-1))")
self.assertEqual(
cexpr(expr),
"c10::div_floor_floating(static_cast<double>(s1), static_cast<double>((-1L)))",
)
def test_print_Min_Max(self):
cases = (
(sympy.Min, "min"),
(sympy.Max, "max"),
)
for f, s in cases:
x = sympy.Symbol("x", integer=True)
expr = f(-2, x)
self.assertEqual(texpr(expr), f"tl.math.{s}(-2, x)")
self.assertEqual(cexpr(expr), f"std::{s}(-2L, x)")
expr = f(x, 2 * x, 3 * x)
self.assertEqual(texpr(expr), f"tl.math.{s}(x, tl.math.{s}(2*x, 3*x))")
self.assertEqual(cexpr(expr), f"std::{s}({{x, 2L*x, 3L*x}})")
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA
if HAS_CPU or HAS_CUDA:
run_tests("sympy")