blob: 0e85b94a38ee50be613f37af1c09135c91f57b8d [file] [log] [blame]
# Owner(s): ["module: inductor"]
import json
import unittest
import torch
import torch._dynamo.test_case
import torch._inductor.utils
from torch._inductor import config
from torch.profiler import ProfilerActivity
from torch.testing._internal.common_utils import skipIfRocm, TemporaryFileName
from torch.utils._triton import has_triton
HAS_TRITON = has_triton()
class DynamoProfilerTests(torch._dynamo.test_case.TestCase):
@unittest.skipIf(not HAS_TRITON, "requires cuda & triton")
def test_inductor_profiling_triton_launch(self):
# Verify that we get some sort of CPU-side indication of triton kernel launches
# in the profile traces. Currently, those appear as `cuLaunchKernel`. If this
# detail changes, the test can be updated or removed.
@torch.compile
def fn(x, y):
return (x + y).sin().cos()
x, y = (torch.rand((4, 4), device="cuda") for _ in range(2))
with torch.profiler.profile() as prof:
fn(x, y)
with TemporaryFileName(mode="w+") as fname:
prof.export_chrome_trace(fname)
with open(fname) as f:
trace_json = json.load(f)
self.assertTrue("traceEvents" in trace_json)
events = trace_json["traceEvents"]
kernel_name = "hipModuleLaunchKernel" if torch.version.hip else "cuLaunchKernel"
def nameMatchesLaunchKernel(event_name):
return kernel_name in event_name
self.assertTrue(
any(("name" in event and kernel_name == event["name"]) for event in events)
)
def _test_profiling_kernel_names(self, fn, args, kernel_name_str: str):
"""
We expect a record_function event to be added on the CPU side, surrounding
the launch of each triton kernel.
"""
fn_opt = torch.compile(fn)
for _ in range(2):
fn_opt(*args)
with torch.profiler.profile(activities=[ProfilerActivity.CPU]) as prof:
fn_opt(*args)
# The name of the kernel is expected to match the name of the kernel in debug
# files etc. The name could change in the future, but it seems reasonable that
# the name should always contain "triton" and "kernel_name_str" - e.g. if the
# kernel contains a sin op, it should probably contain "str" in the name.
# If this changes in the future, feel free to change the assertion here.
# Debugging tips: you can add prof.export_chrome_trace("test.json") inline in
# this test, and then view test.json in chrome://tracing to see the trace.
self.assertTrue(
any(
(
hasattr(event, "name")
and kernel_name_str in event.name
and "triton" in event.name
)
for event in prof.events()
)
)
@unittest.skipIf(not HAS_TRITON, "requires cuda & triton")
def test_inductor_profiling_kernel_names_pointwise(self):
def fn(x, y):
return (x + y).sin().cos()
args = [torch.rand((4, 4), device="cuda") for _ in range(2)]
self._test_profiling_kernel_names(fn, args, "sin")
@unittest.skipIf(not HAS_TRITON, "requires cuda & triton")
@skipIfRocm
def test_inductor_profiling_kernel_names_template(self):
with config.patch(
{"max_autotune": True, "max_autotune_gemm_backends": "TRITON"}
):
def fn(x, y):
return x @ y
args = [torch.rand((4, 4), device="cuda") for _ in range(2)]
self._test_profiling_kernel_names(fn, args, "mm")
@unittest.skipIf(not HAS_TRITON, "requires cuda & triton")
def test_inductor_profiling_kernel_names_foreach(self):
with config.patch(
{"max_autotune": True, "max_autotune_gemm_backends": "TRITON"}
):
def fn(x, y):
return torch._foreach_add(x, y)
x = [torch.rand((4, 4), device="cuda") for _ in range(3)]
y = [torch.rand((4, 4), device="cuda") for _ in range(3)]
args = (x, y)
self._test_profiling_kernel_names(fn, args, "_for_")
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()