| """Async API. |
| |
| This module contains the API for parallelism in TorchScript, notably: |
| * torch.jit.fork |
| * torch.jit.wait |
| |
| This is not intended to be imported directly; please use the exposed |
| functionalities in `torch.jit`. |
| """ |
| |
| import torch |
| from torch._jit_internal import Future |
| from torch.jit._builtins import _register_builtin |
| |
| from torch.utils import set_module |
| |
| set_module(Future, "torch.jit") |
| |
| |
| def fork(func, *args, **kwargs): |
| r""" |
| Create an asynchronous task executing `func` and a reference to the value of the result of this execution. |
| |
| `fork` will return immediately, so the return value of `func` may not have been computed yet. To force completion |
| of the task and access the return value invoke `torch.jit.wait` on the Future. `fork` invoked |
| with a `func` which returns `T` is typed as `torch.jit.Future[T]`. `fork` calls can be arbitrarily |
| nested, and may be invoked with positional and keyword arguments. |
| Asynchronous execution will only occur when run in TorchScript. If run in pure python, |
| `fork` will not execute in parallel. `fork` will also not execute in parallel when invoked |
| while tracing, however the `fork` and `wait` calls will be captured in the exported IR Graph. |
| |
| .. warning:: |
| `fork` tasks will execute non-deterministically. We recommend only spawning |
| parallel fork tasks for pure functions that do not modify their inputs, |
| module attributes, or global state. |
| |
| Args: |
| func (callable or torch.nn.Module): A Python function or `torch.nn.Module` |
| that will be invoked. If executed in TorchScript, it will execute asynchronously, |
| otherwise it will not. Traced invocations of fork will be captured in the IR. |
| ``*args``, ``**kwargs``: arguments to invoke `func` with. |
| Returns: |
| `torch.jit.Future[T]`: a reference to the execution of `func`. The value `T` |
| can only be accessed by forcing completion of `func` through `torch.jit.wait`. |
| |
| Example (fork a free function): |
| |
| .. code-block:: python |
| |
| import torch |
| from torch import Tensor |
| def foo(a : Tensor, b : int) -> Tensor: |
| return a + b |
| def bar(a): |
| fut : torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2) |
| return torch.jit.wait(fut) |
| script_bar = torch.jit.script(bar) |
| input = torch.tensor(2) |
| # only the scripted version executes asynchronously |
| assert script_bar(input) == bar(input) |
| # trace is not run asynchronously, but fork is captured in IR |
| graph = torch.jit.trace(bar, (input,)).graph |
| assert "fork" in str(graph) |
| |
| Example (fork a module method): |
| |
| .. code-block:: python |
| |
| import torch |
| from torch import Tensor |
| class AddMod(torch.nn.Module): |
| def forward(self, a: Tensor, b : int): |
| return a + b |
| class Mod(torch.nn.Module): |
| def __init__(self): |
| super(self).__init__() |
| self.mod = AddMod() |
| def forward(self, input): |
| fut = torch.jit.fork(self.mod, a, b=2) |
| return torch.jit.wait(fut) |
| input = torch.tensor(2) |
| mod = Mod() |
| assert mod(input) == torch.jit.script(mod).forward(input) |
| """ |
| return torch._C.fork(func, *args, **kwargs) |
| |
| |
| def wait(future): |
| r""" |
| Force completion of a `torch.jit.Future[T]` asynchronous task, returning the result of the task. |
| |
| See :func:`~fork` for docs and examples. |
| Args: |
| future (torch.jit.Future[T]): an asynchronous task reference, created through `torch.jit.fork` |
| Returns: |
| `T`: the return value of the completed task |
| """ |
| return torch._C.wait(future) |
| |
| |
| _register_builtin(wait, "aten::wait") |