| import torch |
| from torch import Tensor |
| from .optimizer import (Optimizer, _use_grad_for_differentiable, _default_to_fused_or_foreach, |
| _differentiable_doc, _foreach_doc, _maximize_doc, _view_as_real) |
| from typing import List, Optional |
| |
| __all__ = ["Rprop", "rprop"] |
| |
| |
| class Rprop(Optimizer): |
| def __init__( |
| self, |
| params, |
| lr=1e-2, |
| etas=(0.5, 1.2), |
| step_sizes=(1e-6, 50), |
| *, |
| foreach: Optional[bool] = None, |
| maximize: bool = False, |
| differentiable: bool = False, |
| ): |
| if not 0.0 <= lr: |
| raise ValueError(f"Invalid learning rate: {lr}") |
| if not 0.0 < etas[0] < 1.0 < etas[1]: |
| raise ValueError(f"Invalid eta values: {etas[0]}, {etas[1]}") |
| |
| defaults = dict( |
| lr=lr, |
| etas=etas, |
| step_sizes=step_sizes, |
| foreach=foreach, |
| maximize=maximize, |
| differentiable=differentiable, |
| ) |
| super().__init__(params, defaults) |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| for group in self.param_groups: |
| group.setdefault("foreach", None) |
| group.setdefault("maximize", False) |
| group.setdefault("differentiable", False) |
| |
| def _init_group(self, group, params, grads, prevs, step_sizes): |
| has_complex = False |
| for p in group["params"]: |
| if p.grad is None: |
| continue |
| has_complex |= torch.is_complex(p) |
| params.append(p) |
| grad = p.grad |
| if grad.is_sparse: |
| raise RuntimeError("Rprop does not support sparse gradients") |
| |
| grads.append(grad) |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state["step"] = 0 |
| state["prev"] = torch.zeros_like( |
| p, memory_format=torch.preserve_format |
| ) |
| if p.dtype.is_complex: |
| # Complex Number should be as if they are two independent real numbers. |
| # Hence the step_size shouldn't be zero for imaginary part. |
| state["step_size"] = ( |
| grad.new() |
| .resize_as_(grad) |
| .fill_(complex(group["lr"], group["lr"])) |
| ) |
| else: |
| state["step_size"] = ( |
| grad.new().resize_as_(grad).fill_(group["lr"]) |
| ) |
| |
| prevs.append(state["prev"]) |
| step_sizes.append(state["step_size"]) |
| |
| state["step"] += 1 |
| return has_complex |
| |
| @_use_grad_for_differentiable |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (Callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params = [] |
| grads = [] |
| prevs = [] |
| step_sizes = [] |
| etaminus, etaplus = group["etas"] |
| step_size_min, step_size_max = group["step_sizes"] |
| foreach = group["foreach"] |
| maximize = group["maximize"] |
| |
| has_complex = self._init_group(group, params, grads, prevs, step_sizes) |
| |
| rprop( |
| params, |
| grads, |
| prevs, |
| step_sizes, |
| step_size_min=step_size_min, |
| step_size_max=step_size_max, |
| etaminus=etaminus, |
| etaplus=etaplus, |
| foreach=foreach, |
| maximize=maximize, |
| differentiable=group["differentiable"], |
| has_complex=has_complex, |
| ) |
| |
| return loss |
| |
| |
| Rprop.__doc__ = r"""Implements the resilient backpropagation algorithm. |
| |
| .. math:: |
| \begin{aligned} |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta) |
| \text{ (objective)}, \\ |
| &\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min} |
| \text{ (step sizes)} \\ |
| &\textbf{initialize} : g^0_{prev} \leftarrow 0, |
| \: \eta_0 \leftarrow \text{lr (learning rate)} \\ |
| &\rule{110mm}{0.4pt} \\ |
| &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
| &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
| &\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\ |
| &\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\ |
| &\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+}, |
| \Gamma_{max}) \\ |
| &\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\ |
| &\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-}, |
| \Gamma_{min}) \\ |
| &\hspace{15mm} g^i_t \leftarrow 0 \\ |
| &\hspace{10mm} \textbf{else} \: \\ |
| &\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\ |
| &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\ |
| &\hspace{5mm}g_{prev} \leftarrow g_t \\ |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| &\bf{return} \: \theta_t \\[-1.ex] |
| &\rule{110mm}{0.4pt} \\[-1.ex] |
| \end{aligned} |
| |
| For further details regarding the algorithm we refer to the paper |
| `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm |
| <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_. |
| """ + fr""" |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| etas (Tuple[float, float], optional): pair of (etaminus, etaplus), that |
| are multiplicative increase and decrease factors |
| (default: (0.5, 1.2)) |
| step_sizes (Tuple[float, float], optional): a pair of minimal and |
| maximal allowed step sizes (default: (1e-6, 50)) |
| {_foreach_doc} |
| {_maximize_doc} |
| {_differentiable_doc} |
| |
| """ |
| |
| def rprop( |
| params: List[Tensor], |
| grads: List[Tensor], |
| prevs: List[Tensor], |
| step_sizes: List[Tensor], |
| # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 |
| # setting this as kwarg for now as functional API is compiled by torch/distributed/optim |
| foreach: Optional[bool] = None, |
| maximize: bool = False, |
| differentiable: bool = False, |
| has_complex: bool = False, |
| *, |
| step_size_min: float, |
| step_size_max: float, |
| etaminus: float, |
| etaplus: float, |
| ): |
| r"""Functional API that performs rprop algorithm computation. |
| |
| See :class:`~torch.optim.Rprop` for details. |
| """ |
| |
| if foreach is None: |
| _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False) |
| |
| if foreach and torch.jit.is_scripting(): |
| raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
| |
| if foreach and not torch.jit.is_scripting(): |
| func = _multi_tensor_rprop |
| else: |
| func = _single_tensor_rprop |
| |
| func( |
| params, |
| grads, |
| prevs, |
| step_sizes, |
| step_size_min=step_size_min, |
| step_size_max=step_size_max, |
| etaminus=etaminus, |
| etaplus=etaplus, |
| maximize=maximize, |
| differentiable=differentiable, |
| has_complex=has_complex, |
| ) |
| |
| |
| def _single_tensor_rprop( |
| params: List[Tensor], |
| grads: List[Tensor], |
| prevs: List[Tensor], |
| step_sizes: List[Tensor], |
| *, |
| step_size_min: float, |
| step_size_max: float, |
| etaminus: float, |
| etaplus: float, |
| maximize: bool, |
| differentiable: bool, |
| has_complex: bool, |
| ): |
| |
| for i, param in enumerate(params): |
| grad = grads[i] |
| grad = grad if not maximize else -grad |
| prev = prevs[i] |
| step_size = step_sizes[i] |
| |
| if torch.is_complex(param): |
| grad = torch.view_as_real(grad) |
| prev = torch.view_as_real(prev) |
| param = torch.view_as_real(param) |
| step_size = torch.view_as_real(step_size) |
| if differentiable: |
| sign = grad.mul(prev.clone()).sign() |
| else: |
| sign = grad.mul(prev).sign() |
| sign[sign.gt(0)] = etaplus |
| sign[sign.lt(0)] = etaminus |
| sign[sign.eq(0)] = 1 |
| |
| # update stepsizes with step size updates |
| step_size.mul_(sign).clamp_(step_size_min, step_size_max) |
| |
| # for dir<0, dfdx=0 |
| # for dir>=0 dfdx=dfdx |
| grad = grad.clone(memory_format=torch.preserve_format) |
| grad[sign.eq(etaminus)] = 0 |
| |
| # update parameters |
| param.addcmul_(grad.sign(), step_size, value=-1) |
| prev.copy_(grad) |
| |
| |
| def _multi_tensor_rprop( |
| params: List[Tensor], |
| grads: List[Tensor], |
| prevs: List[Tensor], |
| step_sizes: List[Tensor], |
| *, |
| step_size_min: float, |
| step_size_max: float, |
| etaminus: float, |
| etaplus: float, |
| maximize: bool, |
| differentiable: bool, |
| has_complex: bool, |
| ): |
| |
| if len(params) == 0: |
| return |
| |
| assert not differentiable, "_foreach ops don't support autograd" |
| |
| grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, prevs, step_sizes]) |
| for ((grouped_params, grouped_grads, grouped_prevs, grouped_step_sizes), _) in grouped_tensors.values(): |
| # Handle complex params |
| if has_complex: |
| _view_as_real(grouped_params, grouped_grads, grouped_prevs, grouped_step_sizes) |
| |
| signs = torch._foreach_mul(grouped_grads, grouped_prevs) |
| if maximize: |
| torch._foreach_neg_(signs) |
| |
| # At the end of the step, grouped_prevs will contain the current grads, so we reuse |
| # grouped_prevs memory instead of creating a new buffer, but, for clarity, we reassign |
| # to keep referring to the buffer as grouped_grads. |
| torch._foreach_copy_(grouped_prevs, grouped_grads) |
| if maximize: |
| torch._foreach_neg_(grouped_prevs) |
| grouped_grads = grouped_prevs |
| |
| torch._foreach_sign_(signs) |
| for sign in signs: |
| sign[sign.gt(0)] = etaplus |
| sign[sign.lt(0)] = etaminus |
| sign[sign.eq(0)] = 1 |
| |
| # update stepsizes with step size updates |
| torch._foreach_mul_(grouped_step_sizes, signs) |
| for step_size in grouped_step_sizes: |
| step_size.clamp_(step_size_min, step_size_max) |
| |
| # for dir<0, dfdx=0 |
| # for dir>=0 dfdx=dfdx |
| grouped_grads = list(grouped_grads) |
| for i in range(len(grouped_grads)): |
| grouped_grads[i][signs[i].eq(etaminus)] = 0 |
| |
| # explicitly del signs as it's not used after here to save memory |
| del signs |
| |
| # update parameters |
| grad_signs = [grad.sign() for grad in grouped_grads] |
| torch._foreach_addcmul_(grouped_params, grad_signs, grouped_step_sizes, value=-1) |
| |
| # Logically, you may expect grouped_prevs to get updated to grouped_grads, but that's |
| # basically already happened since we've been using grouped_prevs' memory to store |
| # updated grouped_grads! |