blob: d3f9d8f20ac9a9174f6e11ca508e52b78a141a0f [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/irange.h>
#include <c10/util/tempfile.h>
#include <algorithm>
#include <chrono>
#include <future>
#include <iostream>
#include <iterator>
#include <limits>
#include <mutex>
#include <numeric>
#include <stdexcept>
#include <string>
#include <thread>
#include <unordered_set>
#include <vector>
using namespace torch::data; // NOLINT
const std::chrono::milliseconds kMillisecond(1);
struct DummyDataset : datasets::Dataset<DummyDataset, int> {
explicit DummyDataset(size_t size = 100) : size_(size) {}
int get(size_t index) override {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return 1 + index;
}
torch::optional<size_t> size() const override {
return size_;
}
size_t size_;
};
TEST(DataTest, DatasetCallsGetCorrectly) {
DummyDataset d;
std::vector<int> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<int> expected = {1, 2, 3, 4, 5};
ASSERT_EQ(batch, expected);
}
TEST(DataTest, TransformCallsGetApplyCorrectly) {
struct T : transforms::Transform<int, std::string> {
std::string apply(int input) override {
return std::to_string(input);
}
};
auto d = DummyDataset{}.map(T{});
std::vector<std::string> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(batch, expected);
}
// dummy chunk data reader with 3 chunks and 35 examples in total. Each chunk
// contains 10, 5, 20 examples respectively.
struct DummyChunkDataReader : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
using DataType = datasets::ChunkDataReader<int>::ExampleType;
/// Read an entire chunk.
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data;
int start_index = chunk_index == 0
? 0
// NOLINTNEXTLINE(bugprone-fold-init-type)
: std::accumulate(chunk_sizes, chunk_sizes + chunk_index, 0);
batch_data.resize(chunk_sizes[chunk_index]);
std::iota(batch_data.begin(), batch_data.end(), start_index);
return batch_data;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
const static size_t chunk_count_ = 3;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-avoid-c-arrays)
size_t chunk_sizes[chunk_count_] = {10, 5, 20};
};
TEST(DataTest, ChunkDataSetWithInvalidInitParameter) {
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
auto initialization_function = [&](size_t preloader_count,
size_t batch_size,
size_t cache_size,
size_t cross_chunk_shuffle_count = 1) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
preloader_count,
batch_size,
cache_size,
cross_chunk_shuffle_count));
};
ASSERT_THROWS_WITH(
initialization_function(0, 1, 1),
"Preloader count is 0. At least one preloader needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 0, 1),
"Batch size is 0. A positive batch size needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 1, 0),
"Cache size is 0. A positive cache size needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 10, 5),
"Cache size is less than batch size. Cache needs to be large enough to "
"hold at least one batch.");
ASSERT_THROWS_WITH(
initialization_function(1, 10, 20, 0),
"cross_chunk_shuffle_count needs to be greater than 0.");
}
struct InfiniteStreamDataset
: datasets::StreamDataset<InfiniteStreamDataset, std::vector<int>> {
std::vector<int> get_batch(size_t batch_size) override {
std::vector<int> batch(batch_size);
for (auto& i : batch) {
i = counter++;
}
return batch;
}
torch::optional<size_t> size() const override {
return torch::nullopt;
}
size_t counter = 0;
};
TEST(DataTest, InfiniteStreamDataset) {
const size_t kBatchSize = 13;
auto dataset = InfiniteStreamDataset().map(
transforms::Lambda<int>([](int x) { return x + 1; }));
auto data_loader = torch::data::make_data_loader(
std::move(dataset),
samplers::StreamSampler(/*epoch_size=*/39),
kBatchSize);
size_t batch_index = 0;
for (auto& batch : *data_loader) {
ASSERT_LT(batch_index, 3);
ASSERT_EQ(batch.size(), kBatchSize);
for (const auto j : c10::irange(kBatchSize)) {
ASSERT_EQ(batch.at(j), 1 + (batch_index * kBatchSize) + j);
}
batch_index += 1;
}
ASSERT_EQ(batch_index, 3);
}
TEST(DataTest, NoSequencerIsIdentity) {
using namespace torch::data::detail::sequencers; // NOLINT
NoSequencer<int> no_sequencer;
const auto value = no_sequencer.next([] { return 5; }).value();
ASSERT_EQ(value, 5);
}
TEST(DataTest, OrderedSequencerIsSetUpWell) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
ASSERT_EQ(sequencer.next_sequence_number_, 0);
ASSERT_EQ(sequencer.buffer_.size(), kMaxJobs);
}
TEST(DataTest, OrderedSequencerReOrdersValues) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
std::vector<size_t> v = {0, 2, 4, 3, 1};
size_t index = 0;
auto getter = [&v, &index]() { return S{v.at(index++)}; };
// Let's say the sequence number matches for the batch one, then it should
// return immediately.
const auto batch = sequencer.next(getter);
ASSERT_EQ(batch.value().sequence_number, 0);
ASSERT_EQ(index, 1);
// Now it should call the getter until it gets the next value.
ASSERT_EQ(1, sequencer.next(getter).value().sequence_number);
ASSERT_EQ(index, 5);
// The next three should come in order.
for (size_t i = 2; i <= 4; ++i) {
// New value doesn't matter. In fact, it shouldn't be accessed.
ASSERT_EQ(i, sequencer.next(getter).value().sequence_number);
// The index doesn't change.
ASSERT_EQ(index, 5);
}
}
TEST(DataTest, BatchLambdaAppliesFunctionToBatch) {
using InputBatch = std::vector<int>;
using OutputBatch = std::string;
DummyDataset d;
auto e = d.map(transforms::BatchLambda<InputBatch, OutputBatch>(
[](std::vector<int> input) {
return std::to_string(std::accumulate(input.begin(), input.end(), 0));
}));
ASSERT_EQ(e.get_batch({1, 2, 3, 4, 5}), std::string("20"));
}
TEST(DataTest, LambdaAppliesFunctionToExample) {
auto d = DummyDataset().map(transforms::Lambda<int, std::string>(
static_cast<std::string (*)(int)>(std::to_string)));
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(d.get_batch({0, 1, 2, 3, 4}), expected);
}
TEST(DataTest, CollateReducesBatch) {
auto d =
DummyDataset().map(transforms::Collate<int>([](std::vector<int> input) {
return std::accumulate(input.begin(), input.end(), 0);
}));
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, CollationReducesBatch) {
struct Summer : transforms::Collation<int> {
int apply_batch(std::vector<int> input) override {
return std::accumulate(input.begin(), input.end(), 0);
}
};
auto d = DummyDataset().map(Summer{});
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, SequentialSamplerReturnsIndicesInOrder) {
samplers::SequentialSampler sampler(10);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({3, 4, 5, 6, 7}));
ASSERT_EQ(sampler.next(2).value(), std::vector<size_t>({8, 9}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerReturnsLessValuesForLastBatch) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(100).value(), std::vector<size_t>({3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerResetsWell) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerResetsWithNewSizeWell) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(
sampler.next(7).value(), std::vector<size_t>({0, 1, 2, 3, 4, 5, 6}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, CanSaveAndLoadSequentialSampler) {
{
samplers::SequentialSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::SequentialSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
}
TEST(DataTest, RandomSamplerReturnsIndicesInCorrectRange) {
samplers::RandomSampler sampler(10);
std::vector<size_t> indices = sampler.next(3).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(5).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(2).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
ASSERT_FALSE(sampler.next(10).has_value());
}
TEST(DataTest, RandomSamplerReturnsLessValuesForLastBatch) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_EQ(sampler.next(100).value().size(), 2);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, RandomSamplerResetsWell) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, RandomSamplerResetsWithNewSizeWell) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(sampler.next(7).value().size(), 7);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SavingAndLoadingRandomSamplerYieldsSameSequence) {
{
samplers::RandomSampler a(10);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(a.next(10).value(), b.next(10).value());
}
{
samplers::RandomSampler a(10);
a.next(3);
ASSERT_EQ(a.index(), 3);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 3);
auto b_sequence = b.next(10).value();
ASSERT_EQ(b_sequence.size(), 7);
ASSERT_EQ(a.next(10).value(), b_sequence);
}
}
TEST(DataTest, StreamSamplerReturnsTheBatchSizeAndThenRemainder) {
samplers::StreamSampler sampler(/*epoch_size=*/100);
ASSERT_EQ(sampler.next(10).value(), 10);
ASSERT_EQ(sampler.next(2).value(), 2);
ASSERT_EQ(sampler.next(85).value(), 85);
ASSERT_EQ(sampler.next(123).value(), 3);
ASSERT_FALSE(sampler.next(1).has_value());
}
TEST(DataTest, StreamSamplerResetsWell) {
samplers::StreamSampler sampler(/*epoch_size=*/5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, StreamSamplerResetsWithNewSizeWell) {
samplers::StreamSampler sampler(/*epoch_size=*/5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(sampler.next(7).value().size(), 7);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, TensorDatasetConstructsFromSingleTensor) {
datasets::TensorDataset dataset(torch::eye(5));
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, TensorDatasetConstructsFromInitializerListOfTensors) {
std::vector<torch::Tensor> vector = torch::eye(5).chunk(5);
datasets::TensorDataset dataset(vector);
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, StackTransformWorksForExample) {
struct D : public datasets::Dataset<D> {
Example<> get(size_t index) override {
return {tensor[index], 1 + tensor[index]};
}
torch::optional<size_t> size() const override {
return tensor.size(0);
}
torch::Tensor tensor{torch::eye(4)};
};
auto d = D().map(transforms::Stack<Example<>>());
Example<> batch = d.get_batch({0, 1});
ASSERT_TRUE(batch.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
ASSERT_TRUE(batch.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 0, 2)));
Example<> second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
ASSERT_TRUE(second.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
TEST(DataTest, StackTransformWorksForTensorExample) {
auto d = datasets::TensorDataset(torch::eye(4))
.map(transforms::Stack<TensorExample>());
TensorExample batch = d.get_batch({0, 1});
ASSERT_TRUE(batch.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
TensorExample second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
// Template classes cannot be nested in functions.
template <typename Target>
struct T : transforms::TensorTransform<Target> {
torch::Tensor operator()(torch::Tensor input) override {
return input * 2;
}
};
struct TensorStringDataset
: datasets::
Dataset<TensorStringDataset, Example<torch::Tensor, std::string>> {
Example<torch::Tensor, std::string> get(size_t index) override {
return {torch::tensor(static_cast<double>(index)), std::to_string(index)};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, TensorTransformWorksForAnyTargetType) {
auto d = TensorStringDataset().map(T<std::string>{});
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
TEST(DataTest, TensorLambdaWorksforAnyTargetType) {
auto d = TensorStringDataset().map(transforms::TensorLambda<std::string>(
[](torch::Tensor input) { return input * 2; }));
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
struct DummyTensorDataset
: datasets::Dataset<DummyTensorDataset, Example<torch::Tensor, int>> {
Example<torch::Tensor, int> get(size_t index) override {
const auto channels = static_cast<int64_t>(index);
torch::Tensor tensor =
(channels > 0) ? torch::ones({channels, 4, 4}) : torch::ones({4, 4});
return {tensor, static_cast<int>(channels)};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, NormalizeTransform) {
auto dataset = DummyTensorDataset().map(transforms::Normalize<int>(0.5, 0.1));
// Works for zero (one implicit) channels
std::vector<Example<torch::Tensor, int>> output = dataset.get_batch(0);
ASSERT_EQ(output.size(), 1);
// (1 - 0.5) / 0.1 = 5
ASSERT_TRUE(output[0].data.allclose(torch::ones({4, 4}) * 5))
<< output[0].data;
// Works for one explicit channel
output = dataset.get_batch(1);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 1);
ASSERT_TRUE(output[0].data.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
// Works for two channels with different moments
dataset = DummyTensorDataset().map(
transforms::Normalize<int>({0.5, 1.5}, {0.1, 0.2}));
output = dataset.get_batch(2);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 2);
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/0, /*end=*/1)
.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/1)
.allclose(torch::ones({1, 4, 4}) * -2.5))
<< output[0].data;
// Works for three channels with one moment value
dataset = DummyTensorDataset().map(transforms::Normalize<int>(1.5, 0.2));
output = dataset.get_batch(3);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 3);
ASSERT_TRUE(output[0].data.allclose(torch::ones({3, 4, 4}) * -2.5))
<< output[0].data;
// Works for three channels with different moments
dataset = DummyTensorDataset().map(
transforms::Normalize<int>({0.5, 1.5, -1.5}, {0.1, 0.2, 0.2}));
output = dataset.get_batch(3);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 3);
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/0, /*end=*/1)
.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/1, /*end=*/2)
.allclose(torch::ones({1, 4, 4}) * -2.5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/2)
.allclose(torch::ones({1, 4, 4}) * 12.5))
<< output[0].data;
}
struct UnCopyableDataset : public datasets::Dataset<UnCopyableDataset> {
UnCopyableDataset() = default;
UnCopyableDataset(const UnCopyableDataset&) = delete;
UnCopyableDataset& operator=(const UnCopyableDataset&) = delete;
UnCopyableDataset(UnCopyableDataset&&) = default;
UnCopyableDataset& operator=(UnCopyableDataset&&) = default;
// NOLINTNEXTLINE(modernize-use-override)
~UnCopyableDataset() = default;
Example<> get(size_t index) override {
return {
torch::tensor({static_cast<int64_t>(index)}),
torch::tensor({static_cast<int64_t>(index)})};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, MapDoesNotCopy) {
auto dataset = UnCopyableDataset()
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 1; }))
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 2; }))
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 3; }));
auto data = dataset.get_batch(1).at(0).data;
ASSERT_EQ(data.numel(), 1);
ASSERT_EQ(data[0].item<float>(), 7);
}
TEST(DataTest, QueuePushAndPopFromSameThread) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
ASSERT_EQ(queue.pop(), 1);
ASSERT_EQ(queue.pop(), 2);
}
TEST(DataTest, QueuePopWithTimeoutThrowsUponTimeout) {
torch::data::detail::Queue<int> queue;
ASSERT_THROWS_WITH(
queue.pop(10 * kMillisecond),
"Timeout in DataLoader queue while waiting for next batch "
"(timeout was 10 ms)");
}
TEST(DataTest, QueuePushAndPopFromDifferentThreads) {
using torch::data::detail::Queue;
// First test: push batch and the pop in thread.
{
Queue<int> queue;
queue.push(1);
auto future =
std::async(std::launch::async, [&queue] { return queue.pop(); });
ASSERT_EQ(future.get(), 1);
}
// Second test: attempt to pop batch (and block), then push.
{
Queue<int> queue;
std::thread thread([&queue] {
std::this_thread::sleep_for(20 * kMillisecond);
queue.push(123);
});
ASSERT_EQ(queue.pop(), 123);
thread.join();
}
}
TEST(DataTest, QueueClearEmptiesTheQueue) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
queue.push(3);
ASSERT_EQ(queue.clear(), 3);
ASSERT_THROWS_WITH(queue.pop(1 * kMillisecond), "Timeout");
}
TEST(DataTest, DataShuttleCanPushAndPopJob) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_job(2);
ASSERT_EQ(shuttle.pop_job(), 1);
ASSERT_EQ(shuttle.pop_job(), 2);
}
TEST(DataTest, DataShuttleCanPushAndPopResult) {
torch::data::detail::DataShuttle<int, int> shuttle;
// pop_result() will only attempt to pop if there was a push_job() batch.
shuttle.push_job(1);
shuttle.push_job(2);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
shuttle.pop_job();
shuttle.push_result(2);
ASSERT_EQ(shuttle.pop_result().value(), 2);
}
TEST(DataTest, DataShuttlePopResultReturnsNulloptWhenNoJobsInFlight) {
torch::data::detail::DataShuttle<int, int> shuttle;
ASSERT_FALSE(shuttle.pop_result().has_value());
shuttle.push_job(1);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
ASSERT_FALSE(shuttle.pop_result().has_value());
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttleDrainMeansPopResultReturnsNullopt) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_result(1);
shuttle.drain();
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttlePopResultTimesOut) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
ASSERT_THROWS_WITH(shuttle.pop_result(10 * kMillisecond), "Timeout");
}
struct UncopyableDataset : datasets::Dataset<UncopyableDataset, int> {
UncopyableDataset(const std::string& /* unused */) {}
UncopyableDataset(UncopyableDataset&&) = default;
UncopyableDataset& operator=(UncopyableDataset&&) = default;
UncopyableDataset(const UncopyableDataset&) = delete;
UncopyableDataset& operator=(const UncopyableDataset&) = delete;
int get(size_t index) override {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return 1 + index;
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, SharedBatchDatasetReallyIsShared) {
// This test will only compile if we really are not making any copies.
// There is otherwise no logic to test and because it is not deterministic
// how many and when worker threads access the shareddataset, we don't have
// any additional assertions here.
auto shared_dataset =
torch::data::datasets::make_shared_dataset<UncopyableDataset>(
"uncopyable");
auto data_loader = torch::data::make_data_loader(
shared_dataset, torch::data::DataLoaderOptions().workers(3));
for (auto batch : *data_loader) {
/* exhaust */
}
}
TEST(DataTest, SharedBatchDatasetDoesNotIncurCopyWhenPassedDatasetObject) {
// This will not compile if a copy is made.
auto shared_dataset =
torch::data::datasets::make_shared_dataset<UncopyableDataset>(
UncopyableDataset("uncopyable"));
ASSERT_EQ(shared_dataset.size().value(), 100);
}
struct TestIndex : public torch::data::samplers::CustomBatchRequest {
explicit TestIndex(size_t offset, std::vector<size_t> index)
: offset(offset), index(std::move(index)) {}
size_t size() const override {
return index.size();
}
size_t offset;
std::vector<size_t> index;
};
struct TestIndexDataset
: datasets::BatchDataset<TestIndexDataset, std::vector<int>, TestIndex> {
explicit TestIndexDataset(size_t size) : data(size) {
std::iota(data.begin(), data.end(), size_t(0));
}
std::vector<int> get_batch(TestIndex index) override {
std::vector<int> batch;
for (auto i : index.index) {
batch.push_back(index.offset + data.at(i));
}
return batch;
}
torch::optional<size_t> size() const override {
return data.size();
}
std::vector<int> data;
};
struct TestIndexSampler : public samplers::Sampler<TestIndex> {
explicit TestIndexSampler(size_t size) : size_(size) {}
void reset(torch::optional<size_t> new_size = torch::nullopt) override {}
torch::optional<TestIndex> next(size_t batch_size) override {
if (index_ >= size_) {
return torch::nullopt;
}
std::vector<size_t> indices(batch_size);
std::iota(indices.begin(), indices.end(), size_t(0));
index_ += batch_size;
return TestIndex(batch_size, std::move(indices));
}
void save(torch::serialize::OutputArchive& archive) const override {}
void load(torch::serialize::InputArchive& archive) override {}
size_t index_ = 0;
size_t size_;
};
TEST(DataTest, CanUseCustomTypeAsIndexType) {
const int kBatchSize = 10;
auto data_loader = torch::data::make_data_loader(
TestIndexDataset(23), TestIndexSampler(23), kBatchSize);
for (auto batch : *data_loader) {
for (const auto j : c10::irange(kBatchSize)) {
ASSERT_EQ(batch.at(j), 10 + j);
}
}
}
TEST(DataTest, DistributedRandomSamplerSingleReplicaProduceCorrectSamples) {
size_t sample_count = 10;
samplers::DistributedRandomSampler drs(sample_count);
std::vector<size_t> res;
torch::optional<std::vector<size_t>> idx;
while ((idx = drs.next(3)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), sample_count);
std::sort(res.begin(), res.end());
for (const auto i : c10::irange(res.size())) {
ASSERT_EQ(res[i], i);
}
}
TEST(DataTest, DistributedRandomSamplerMultiReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t num_replicas = 3;
auto test_function = [&](bool allow_duplicates,
size_t local_sample_count,
std::vector<size_t>& output,
size_t batch_size) {
std::vector<std::unique_ptr<samplers::DistributedRandomSampler>> samplers;
for (const auto i : c10::irange(num_replicas)) {
samplers.emplace_back(
torch::make_unique<samplers::DistributedRandomSampler>(
sample_count, num_replicas, i, allow_duplicates));
}
std::vector<size_t> res;
for (const auto i : c10::irange(num_replicas)) {
(*samplers[i]).reset();
torch::optional<std::vector<size_t>> idx;
while ((idx = (*samplers[i]).next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), local_sample_count * (i + 1));
}
std::sort(res.begin(), res.end());
ASSERT_EQ(res, output);
};
for (size_t batch_size = 1; batch_size <= 3; ++batch_size) {
size_t local_sample_count =
static_cast<size_t>(std::ceil(sample_count * 1.0 / num_replicas));
std::vector<size_t> output1{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
test_function(true, local_sample_count, output1, batch_size);
local_sample_count =
static_cast<size_t>(std::floor(sample_count * 1.0 / num_replicas));
std::vector<size_t> output2{0, 1, 2, 3, 4, 5, 6, 7, 8};
test_function(false, local_sample_count, output2, batch_size);
}
}
TEST(DataTest, CanSaveAndLoadDistributedRandomSampler) {
{
samplers::DistributedRandomSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::DistributedRandomSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
{
samplers::DistributedRandomSampler a(10);
a.set_epoch(3);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.epoch(), 3);
}
}
TEST(DataTest, DistributedSequentialSamplerSingleReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t batch_size = 3;
samplers::DistributedSequentialSampler dss(sample_count);
std::vector<size_t> res;
torch::optional<std::vector<size_t>> idx;
while ((idx = dss.next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), sample_count);
std::sort(res.begin(), res.end());
for (const auto i : c10::irange(res.size())) {
ASSERT_EQ(res[i], i);
}
}
TEST(DataTest, DistributedSequentialSamplerMultiReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t num_replicas = 3;
auto test_function = [&](bool allow_duplicates,
size_t local_sample_count,
std::vector<size_t>& output,
size_t batch_size) {
std::vector<std::unique_ptr<samplers::DistributedSequentialSampler>>
samplers;
for (const auto i : c10::irange(num_replicas)) {
samplers.emplace_back(
torch::make_unique<samplers::DistributedSequentialSampler>(
sample_count, num_replicas, i, allow_duplicates));
}
std::vector<size_t> res;
for (const auto i : c10::irange(num_replicas)) {
(*samplers[i]).reset();
torch::optional<std::vector<size_t>> idx;
while ((idx = (*samplers[i]).next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), local_sample_count * (i + 1));
}
std::sort(res.begin(), res.end());
ASSERT_EQ(res, output);
};
for (size_t batch_size = 1; batch_size <= 3; ++batch_size) {
size_t local_sample_count =
static_cast<size_t>(std::ceil(sample_count * 1.0 / num_replicas));
std::vector<size_t> output1{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
test_function(true, local_sample_count, output1, batch_size);
local_sample_count =
static_cast<size_t>(std::floor(sample_count * 1.0 / num_replicas));
std::vector<size_t> output2{0, 1, 2, 3, 4, 5, 6, 7, 8};
test_function(false, local_sample_count, output2, batch_size);
}
}
TEST(DataTest, CanSaveAndLoadDistributedSequentialSampler) {
{
samplers::DistributedSequentialSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedSequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::DistributedSequentialSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedSequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
}
TEST(DataLoaderTest, DataLoaderOptionsDefaultAsExpected) {
DataLoaderOptions partial_options;
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 1);
ASSERT_FALSE(full_options.drop_last);
ASSERT_EQ(full_options.workers, 0);
ASSERT_EQ(full_options.max_jobs, 0);
ASSERT_FALSE(full_options.timeout.has_value());
ASSERT_TRUE(full_options.enforce_ordering);
}
TEST(DataLoaderTest, DataLoaderOptionsCoalesceOptionalValues) {
auto partial_options = DataLoaderOptions(32).workers(10);
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 32);
ASSERT_EQ(full_options.max_jobs, 2 * 10);
}
TEST(DataLoaderTest, MakeDataLoaderDefaultsAsExpected) {
auto data_loader = torch::data::make_data_loader(
DummyDataset().map(transforms::Lambda<int>([](int x) { return x + 1; })));
ASSERT_EQ(data_loader->options().batch_size, 1);
}
struct UnsizedDataset : public datasets::Dataset<UnsizedDataset> {
torch::data::Example<> get(size_t i) override {
return {torch::ones(i), torch::ones(i)};
}
torch::optional<size_t> size() const noexcept override {
return torch::nullopt;
}
};
TEST(
DataLoaderTest,
MakeDataLoaderThrowsWhenConstructingSamplerWithUnsizedDataset) {
ASSERT_THROWS_WITH(
torch::data::make_data_loader(UnsizedDataset{}),
"Expected the dataset to be sized in order to construct the Sampler");
}
TEST(DataLoaderTest, IteratorsCompareEqualToThemselves) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto begin = data_loader->begin();
ASSERT_EQ(begin, begin);
auto end = data_loader->end();
ASSERT_EQ(end, end);
}
TEST(DataLoaderTest, ValidIteratorsCompareUnequalToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->begin();
auto j = data_loader->begin();
ASSERT_NE(i, j);
++j;
ASSERT_NE(i, j);
}
TEST(DataLoaderTest, SentinelIteratorsCompareEqualToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->end();
auto j = data_loader->end();
ASSERT_EQ(i, j);
}
TEST(DataLoaderTest, IteratorsCompareEqualToSentinelWhenExhausted) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 4);
auto i = data_loader->begin();
auto end = data_loader->end();
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_EQ(i, end);
}
TEST(DataLoaderTest, IteratorsShareState) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 2);
auto i = data_loader->begin();
auto j = i;
auto end = data_loader->end();
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++i;
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++j;
ASSERT_EQ(i, end);
ASSERT_EQ(j, end);
}
TEST(DataLoaderTest, CanDereferenceIteratorMultipleTimes) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(
dataset,
// NOLINTNEXTLINE(bugprone-argument-comment)
/*batch_size=*/1);
auto iterator = data_loader->begin();
std::vector<int> expected = {1};
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
++iterator;
expected[0] = 2;
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
++iterator;
expected[0] = 3;
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
}
TEST(DataLoaderTest, CanUseIteratorAlgorithms) {
struct D : datasets::BatchDataset<D, int> {
int get_batch(torch::ArrayRef<size_t> indices) override {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return 1 + indices.front();
}
torch::optional<size_t> size() const override {
return 10;
}
};
D dataset;
auto data_loader =
torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(
dataset, 1);
std::vector<int> values;
std::copy(
data_loader->begin(), data_loader->end(), std::back_inserter(values));
std::vector<int> expected(dataset.size().value());
std::iota(expected.begin(), expected.end(), size_t(1));
ASSERT_EQ(values, expected);
}
TEST(DataLoaderTest, CallingBeginWhileOtherIteratorIsInFlightThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, DataLoaderOptions(1).workers(2));
auto i = data_loader->begin();
ASSERT_THROWS_WITH(
data_loader->begin(),
"Attempted to get a new DataLoader iterator "
"while another iterator is not yet exhausted");
}
TEST(DataLoaderTest, IncrementingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->begin();
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(++i, "Attempted to increment iterator past the end");
}
TEST(DataLoaderTest, DereferencingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->begin();
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(
*i, "Attempted to dereference iterator that was past the end");
}
TEST(DataLoaderTest, IncrementingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
++i,
"Incrementing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, DereferencingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
*i,
"Dereferencing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, YieldsCorrectBatchSize) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, 25);
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
ReturnsLastBatchWhenSmallerThanBatchSizeWhenDropLastIsFalse) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(false));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 1);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
DoesNotReturnLastBatchWhenSmallerThanBatchSizeWhenDropLastIsTrue) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(true));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(DataLoaderTest, RespectsTimeout) {
struct Baton {
std::condition_variable cv;
std::mutex mutex;
};
struct D : datasets::Dataset<DummyDataset, int> {
D(std::shared_ptr<Baton> b) : baton(std::move(b)) {}
int get(size_t index) override {
std::unique_lock<std::mutex> lock(baton->mutex);
baton->cv.wait_for(lock, 1000 * kMillisecond);
return 0;
}
torch::optional<size_t> size() const override {
return 100;
}
std::shared_ptr<Baton> baton;
};
auto baton = std::make_shared<Baton>();
auto data_loader = torch::data::make_data_loader(
D{baton}, DataLoaderOptions().workers(1).timeout(10 * kMillisecond));
auto start = std::chrono::system_clock::now();
ASSERT_THROWS_WITH(*data_loader->begin(), "Timeout");
baton->cv.notify_one();
auto end = std::chrono::system_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(end - start);
ASSERT_LT(duration.count(), 1);
}
// stackoverflow.com/questions/24465533/implementing-boostbarrier-in-c11
struct Barrier {
explicit Barrier(size_t target) : counter_(target) {}
void wait() {
std::unique_lock<std::mutex> lock(mutex_);
if (--counter_ == 0) {
cv_.notify_all();
} else {
cv_.wait(lock, [this] { return this->counter_ == 0; });
}
}
size_t counter_;
std::condition_variable cv_;
std::mutex mutex_;
};
// On the OrderingTest: This test is intended to verify that the
// `enforce_ordering` option of the dataloader works correctly. The reason this
// flag exists is because when the dataloader has multiple workers (threads)
// enabled and this flag is not set, the order in which worker threads finish
// loading their respective batch and push it back to the dataloader's main
// thread (for outside consumption) is not deterministic. Imagine the sampler is
// a SequentialSampler with indices 0, 1, 2, 3. With batch size 1, each index
// will be a single "job". Inside the dataloader, worker threads block until a
// job is available. It is not deterministic which worker thread wakes up batch
// to dequeue a particular batch. Further, some worker threads may take longer
// than others to read the data for their index. As such, it could be that
// worker thread 2 finishes before all other threads and returns its batch to
// the main thread. In that case, the dataloader iterator would return the datum
// at index 2 batch, and afterwards the datum from whatever thread finishes
// next. As such, the user may see data from indices 2, 0, 3, 1. On another run
// of the same dataloader on the same data, threads may be scheduled differently
// and return in order 0, 2, 3, 1. To force this ordering to deterministically
// be 0, 1, 2, 3, the `enforce_ordering` flag can be set to true. In that case,
// the dataloader will use a *sequencer* internally which keeps track of which
// datum is expected next, and buffers any other results until that next
// expected value arrives. For example, workers 1, 2, 3 may finish before worker
// 0. If `enforce_ordering` is true, the sequencer will internally buffer the
// results from 1, 2, 3 until worker 0 finishes. Only then does the dataloader
// return the datum from worker 0 to the user (and then datum 1 the next time,
// then 2 and so on).
//
// The way the test works is that we start
// `kNumberOfWorkers` workers in the dataloader, which each get an index from a
// `SequentialSampler` in the range `0...kNumberOfWorkers-1`. Each worker thread
// has a copy of the dataset, and thus `get_batch()` is called on the
// thread-local copy in each worker. We want to simulate out-of-order completion
// of these threads. For this, we batch set a barrier in the `get_batch()`
// method to make sure every worker has some index to fetch assigned. Further,
// each worker thread has a unique ID in `0...kNumberOfWorkers-1`.
// There is a hard-coded ordering, `kOrderInWhichWorkersReturnTheirBatch`, in
// which we want the worker threads to return. For this, an iterator into this
// order is maintained. When the derferenced iterator (the current order index)
// matches the thread ID of a worker, it knows it can now return its index as
// well as progress the iterator. Inside the dataloader, the sequencer should
// buffer these indices such that they are ultimately returned in order.
namespace ordering_test {
namespace {
const size_t kNumberOfWorkers = 10;
const std::vector<size_t> kOrderInWhichWorkersReturnTheirBatch =
{3, 7, 0, 5, 4, 8, 2, 1, 9, 6};
} // namespace
struct Dataset : datasets::BatchDataset<Dataset, size_t> {
Dataset() = default;
// This copy constructor will be called when we copy the dataset into a
// particular thread.
Dataset(const Dataset& other) {
static std::atomic<size_t> counter{0};
thread_id_ = counter.fetch_add(1);
}
Dataset(Dataset&& other) noexcept = default;
Dataset& operator=(const Dataset& other) = delete;
Dataset& operator=(Dataset&& other) noexcept = delete;
size_t get_batch(torch::ArrayRef<size_t> indices) override {
static Barrier barrier(kNumberOfWorkers);
static auto order_iterator = kOrderInWhichWorkersReturnTheirBatch.begin();
static std::condition_variable cv;
static std::mutex mutex;
// Wait for all threads to get an index batch and arrive here.
barrier.wait();
std::unique_lock<std::mutex> lock(mutex);
cv.wait(lock, [this] { return *order_iterator == this->thread_id_; });
++order_iterator;
lock.unlock();
cv.notify_all();
return indices.front();
}
torch::optional<size_t> size() const override {
return kNumberOfWorkers;
}
size_t thread_id_ = 0;
};
} // namespace ordering_test
TEST(DataLoaderTest, EnforcesOrderingAmongThreadsWhenConfigured) {
auto data_loader = torch::data::make_data_loader(
ordering_test::Dataset{},
torch::data::samplers::SequentialSampler(ordering_test::kNumberOfWorkers),
DataLoaderOptions()
.batch_size(1)
.workers(ordering_test::kNumberOfWorkers)
.enforce_ordering(true));
std::vector<size_t> output;
for (size_t value : *data_loader) {
output.push_back(value);
}
std::vector<size_t> expected(ordering_test::kNumberOfWorkers);
std::iota(expected.begin(), expected.end(), size_t(0));
ASSERT_EQ(expected, output);
}
TEST(DataLoaderTest, Reset) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 2);
auto end = data_loader->end();
auto iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
}
TEST(DataLoaderTest, TestExceptionsArePropagatedFromWorkers) {
struct D : datasets::Dataset<DummyDataset, int> {
int get(size_t index) override {
throw std::invalid_argument("badness");
}
torch::optional<size_t> size() const override {
return 100;
}
};
auto data_loader = torch::data::make_data_loader(
D{}, samplers::RandomSampler(100), DataLoaderOptions().workers(2));
auto iterator = data_loader->begin();
try {
(void)*iterator;
} catch (torch::data::WorkerException& e) {
ASSERT_EQ(
e.what(),
std::string("Caught exception in DataLoader worker thread. "
"Original message: badness"));
// NOLINTNEXTLINE(hicpp-avoid-goto,cppcoreguidelines-avoid-goto)
ASSERT_THROW(
std::rethrow_exception(e.original_exception), std::invalid_argument);
}
}
TEST(DataLoaderTest, StatefulDatasetWithNoWorkers) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
};
auto data_loader = torch::data::make_data_loader(D{});
for (const auto i : c10::irange(10)) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const int i : *data_loader) {
ASSERT_LT(i, kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithManyWorkers) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
const int kNumberOfWorkers = 4;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
std::lock_guard<std::mutex> lock(mutex);
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
std::mutex mutex;
};
auto data_loader = torch::data::make_data_loader(
torch::data::datasets::make_shared_dataset<D>(),
DataLoaderOptions().workers(kNumberOfWorkers));
for (const auto i : c10::irange(10)) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const int i : *data_loader) {
ASSERT_LT(i, kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithMap) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
};
auto data_loader = torch::data::make_data_loader(
D().map(transforms::BatchLambda<int, std::string>(
[](int x) { return std::to_string(x); }))
.map(transforms::BatchLambda<std::string, torch::Tensor>(
[](const std::string& x) {
return torch::tensor(static_cast<int64_t>(std::stoi(x)));
})),
DataLoaderOptions{});
for (const auto i : c10::irange(10)) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const torch::Tensor& t : *data_loader) {
ASSERT_LT(t.item<int64_t>(), kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithCollate) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D> {
torch::optional<std::vector<Example<>>> get_batch(
size_t batch_size) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
counter += batch_size;
std::vector<Example<>> batch(
/*count=*/batch_size,
Example<>{
torch::ones(batch_size + 1), torch::zeros(batch_size - 1)});
return batch;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
void save(torch::serialize::OutputArchive& archive) const override{};
void load(torch::serialize::InputArchive& archive) override {}
int counter = 0;
};
auto d = D().map(transforms::Stack<Example<>>());
const size_t kBatchSize = 5;
// Notice that the `get_batch()` of the dataset returns a vector<Example>, but
// the `Stack` collation stacks the tensors into one.
torch::optional<Example<>> batch = d.get_batch(kBatchSize);
ASSERT_TRUE(batch.has_value());
ASSERT_EQ(batch->data.size(0), kBatchSize);
ASSERT_EQ(batch->data.size(1), kBatchSize + 1);
ASSERT_EQ(batch->target.size(0), kBatchSize);
ASSERT_EQ(batch->target.size(1), kBatchSize - 1);
ASSERT_TRUE(batch->data[0].allclose(torch::ones(kBatchSize + 1)));
ASSERT_TRUE(batch->target[0].allclose(torch::zeros(kBatchSize - 1)));
}
// This test tests the core function for iterate through a chunk dataset. It
// contains test cases with different parameter combination. (For example,
// different prefetch count, batch size and data loader worker count). It
// verifies the return batches size and content when the order is deterministic.
TEST(DataLoaderTest, ChunkDataSetGetBatch) {
// different prefetch count for testing.
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t prefetch_counts[] = {1, 2, 3, 4};
// different batch size for testing.
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t batch_sizes[] = {5, 7};
// test with/without worker threads
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t dataloader_worker_counts[] = {0, 2};
const size_t total_example_count = 35;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
// test functionality across epoch boundary
const int epoch_count = 2;
for (auto prefetch_count : prefetch_counts) {
for (auto batch_size : batch_sizes) {
for (auto dataloader_worker_count : dataloader_worker_counts) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset,
DataLoaderOptions(batch_size).workers(dataloader_worker_count));
for (const auto epoch_index : c10::irange(epoch_count)) {
(void)epoch_index; // Suppress unused variable warning
std::vector<bool> result(total_example_count, false);
int iteration_count = 0;
for (auto iterator = data_loader->begin();
iterator != data_loader->end();
++iterator, ++iteration_count) {
DummyChunkDataReader::BatchType& batch = *iterator;
ASSERT_EQ(batch.size(), batch_size);
// When prefetch_count is equal to 1 and no worker thread, the batch
// order is deterministic. So we can verify elements in each batch.
if (prefetch_count == 1 && dataloader_worker_count == 0) {
for (const auto j : c10::irange(batch_size)) {
ASSERT_EQ(batch[j], iteration_count * batch_size + j);
}
}
for (const auto j : c10::irange(batch_size)) {
result[batch[j]] = true;
}
}
for (auto data : result) {
ASSERT_EQ(data, true);
}
}
}
}
}
}
TEST(DataLoaderTest, ChunkDataSetWithBatchSizeMismatch) {
const size_t prefetch_count = 1;
const size_t batch_size = 5;
const size_t requested_batch_size = 6;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(requested_batch_size).workers(0));
std::string exception_msg =
"The requested batch size does not match with the initialized batch "
"size.\n The requested batch size is 6, while the dataset is created"
" with batch size equal to 5";
ASSERT_THROWS_WITH(*(data_loader->begin()), exception_msg);
}
TEST(DataLoaderTest, ChunkDataSetWithEmptyBatch) {
struct DummyEmptyChunkDataReader : datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
return {};
}
size_t chunk_count() override {
return 1;
};
void reset() override{};
};
const size_t prefetch_count = 1;
const size_t batch_size = 5;
DummyEmptyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyEmptyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyEmptyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
ASSERT_EQ(iterator->size(), 0);
}
}
TEST(DataLoaderTest, ChunkDataSetGetBatchWithUnevenBatchSize) {
struct D : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data(10, 0);
return batch_data;
}
size_t chunk_count() override {
return 2;
};
void reset() override{};
};
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t batch_sizes[] = {17, 30};
D data_reader;
samplers::SequentialSampler sampler(0);
for (auto batch_size : batch_sizes) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(1, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
DummyChunkDataReader::BatchType batch = *iterator;
auto batch_size = batch.size();
if (batch_size == 17) {
ASSERT_TRUE(batch.size() == 17 || batch.size() == 3);
}
if (batch_size == 30) {
ASSERT_TRUE(batch.size() == 20);
}
}
}
}
TEST(DataLoaderTest, CanAccessChunkSamplerWithChunkDataSet) {
const size_t prefetch_count = 2;
const size_t batch_size = 5;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
samplers::SequentialSampler& chunk_sampler = dataset->chunk_sampler();
auto data_loader = torch::data::make_data_loader(
dataset.map(transforms::BatchLambda<
DummyChunkDataReader::BatchType,
DummyChunkDataReader::DataType>(
[](DummyChunkDataReader::BatchType batch) {
return std::accumulate(batch.begin(), batch.end(), 0);
})),
DataLoaderOptions(batch_size).workers(0));
// before we start, the index should be 0.
ASSERT_EQ(chunk_sampler.index(), 0);
size_t sum = 0;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
sum += *iterator;
}
ASSERT_EQ(sum, 595); // sum([0, 35))
// 3 chunks, and when exhausted the value is already incremented.
ASSERT_EQ(chunk_sampler.index(), 3);
}
TEST(DataLoaderTest, ChunkDatasetDoesNotHang) {
const size_t prefetch_count = 2;
const size_t batch_size = 5;
// this will make the preloaders to wait till the `get_batch()` calls.
const size_t cache_size = 10;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
prefetch_count, batch_size, cache_size));
auto data_loader = torch::data::make_data_loader(
dataset.map(transforms::BatchLambda<
DummyChunkDataReader::BatchType,
DummyChunkDataReader::DataType>(
[](DummyChunkDataReader::BatchType batch) {
return std::accumulate(batch.begin(), batch.end(), 0);
})),
DataLoaderOptions(batch_size).workers(0));
// simply creates the iterator but no iteration. chunk preloaders are waiting
// to fill the batch buffer but it is not draining. Still we need to exit
// cleanly.
auto iterator = data_loader->begin();
}
// Test ChunkDataset save function.
// Note [save/load ChunkDataset as ChunkSampler]:
// The chunk sampler inside ChunkDataset is used in a separate thread pool other
// than the main thread. Thus it is very hard to accurately estimate its status
// when ChunkDataset::save/ChunkDataset::load is called. For the pure purpose of
// testing, we utilize the implementation fact that the file format for sampler
// serialization is the same as ChunkDataset serialization, and manually control
// the chunk sampler by calling the sampler's save/load method for value
// validation. This is only for testing the specific save/load functionality. In
// real user case, the user should still use matching ChunkDataset::save and
// ChunkDataset::load method.
TEST(DataLoaderTest, ChunkDatasetSave) {
const size_t chunk_count_ = 6;
const size_t chunk_size = 10;
struct DummyTestChunkDataReader : datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
return batch_data_;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
BatchType batch_data_ = BatchType(chunk_size, 0);
};
const size_t prefetch_count = 1;
const size_t batch_size = chunk_size;
const size_t dataloader_worker_count = 0;
samplers::SequentialSampler sampler(0);
const int epoch_count = 2;
DummyTestChunkDataReader data_reader;
// tested save_intervals
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t save_intervals[] = {1, 2};
using datasets::ChunkDatasetOptions;
for (auto save_interval : save_intervals) {
auto tempfile = c10::make_tempfile();
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyTestChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyTestChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
ChunkDatasetOptions(
prefetch_count, batch_size, chunk_size /*cache size*/));
auto data_loader = torch::data::make_data_loader(
dataset,
DataLoaderOptions(batch_size).workers(dataloader_worker_count));
for (const auto epoch_index : c10::irange(epoch_count)) {
(void)epoch_index; // Suppress unused variable warning
unsigned iteration_count = 0;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator, ++iteration_count) {
if ((iteration_count + 1) % save_interval == 0) {
torch::save(*dataset, tempfile.name);
samplers::SequentialSampler new_sampler(0);
// See Note [save/load ChunkDataset as ChunkSampler]
torch::load(new_sampler, tempfile.name);
// Verify save logic. For ChunkDataset, the chunk data is stored in a
// cache inside the dataset. One pool of threads are constantly
// writing to the cache, and a different pool of thread are constantly
// reading from the cache. Due to the nature of asynchronization, at
// the time of get_batch(), which chunk is written to the cache is not
// fully deterministic.
// But we can still calculate a restricted window on the expected
// output, hence verify the logic. In this test, the cache size is
// configured to be the same as chunk size and batch size. So the
// chunk data is written to the cache one by one. Only the current
// batch is retrieved, the next chunk is written. Now in iteration 0,
// after the first batch is retrieved, when we save the dataset
// statues, there are three possible scenarios for the writer thread:
// 1. it hasn't started loading the next chunk data yet, so the
// sequential sampler index is still 0;
// 2. it started to load the second chunk, so the sequencial sampler
// index is at 1;
// 3. it finished loading the second chunk, and start to load the
// third chunk, because the cache is still fully occupied by the data
// from the second chunk, it is waiting to write to the cache. At this
// point, the sampler index is at 2.
// So now we have a window of [0, 2], which is what we expected the
// sampler to save the index from. Now noted for sequential sampler,
// it advances to the next index automatically in the call next(). So
// when save the index, it saves the next index in stead of the
// current one. In other word, after getting the first index from
// sequential sampler, it already moves to the second index. So when
// we save it, it is the second index we save. As a result,
// we need to advance the window by one. Now we have the expected
// window of [1, 3].
// This analysis applies to all scenarios. So extend it to a more
// general case: the expected saved index should falling into the
// range of [iteration, iteration + 3], which is the validation
// below.
ASSERT_TRUE(
new_sampler.index() >= iteration_count + 1 &&
new_sampler.index() <= iteration_count + 3);
}
}
}
}
}
// Test ChunkDataset load function.
TEST(DataLoaderTest, ChunkDatasetLoad) {
auto tempfile = c10::make_tempfile();
const size_t prefetch_count = 1;
const size_t batch_size = 10;
const size_t dataloader_worker_count = 0;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
const size_t skipped_chunk = 2;
// Configure sampler to skip 2 chunks
{
sampler.reset(data_reader.chunk_count());
sampler.next(skipped_chunk);
// See Note [save/load ChunkDataset as ChunkSampler]
torch::save(sampler, tempfile.name);
}
// test functionality across epoch boundary. The first epoch should be
// affected by the checkpoint, but the second should start normally.
const int epoch_count = 2;
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
prefetch_count, batch_size, 20 /*cache size*/));
torch::load(*dataset, tempfile.name);
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(dataloader_worker_count));
for (const auto epoch_index : c10::irange(epoch_count)) {
int iteration_count = 0;
// For the first epoch, the returned batch should be returned from the
// third chunk, because the check point skipped the first two chunks. But
// for the next epoch, it should start from the first batch.
int initial_value = epoch_index == 0 ? 15 : 0;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator, ++iteration_count) {
DummyChunkDataReader::BatchType batch = *iterator;
std::vector<int> expected_result;
size_t expected_size = (epoch_index > 0 && iteration_count == 3) ? 5 : 10;
expected_result.resize(expected_size);
std::iota(expected_result.begin(), expected_result.end(), initial_value);
ASSERT_EQ(batch.size(), expected_result.size());
ASSERT_TRUE(
std::equal(batch.begin(), batch.end(), expected_result.begin()));
initial_value += batch_size;
}
}
samplers::SequentialSampler new_sampler(0);
// See Note [save/load ChunkDataset as ChunkSampler]
torch::load(new_sampler, tempfile.name);
ASSERT_EQ(new_sampler.index(), skipped_chunk);
}
TEST(DataLoaderTest, ChunkDatasetCrossChunkShuffle) {
const size_t chunk_size = 5;
const size_t batch_size = 5;
class S : public samplers::Sampler<> {
public:
explicit S(size_t size) : size_(size), index_(0){};
void reset(torch::optional<size_t> new_size = torch::nullopt) override {
if (new_size.has_value()) {
size_ = *new_size;
}
indices_.resize(size_);
size_t index = 0;
// Repeatly sample every 5 indices.
for (const auto i : c10::irange(batch_size)) {
for (size_t j = 0; j < size_ / batch_size; ++j) {
indices_[index++] = i + batch_size * j;
}
}
index_ = 0;
}
// Returns the next batch of indices.
torch::optional<std::vector<size_t>> next(size_t batch_size) override {
const auto remaining_indices = size_ - index_;
if (remaining_indices == 0) {
return torch::nullopt;
}
auto return_size = std::min(batch_size, remaining_indices);
std::vector<size_t> index_batch(
indices_.begin() + index_, indices_.begin() + index_ + return_size);
index_ += return_size;
return index_batch;
}
void save(torch::serialize::OutputArchive& archive) const override {}
void load(torch::serialize::InputArchive& archive) override {}
private:
size_t size_;
std::vector<size_t> indices_;
size_t index_{0};
};
struct D : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
D(size_t chunk_count) : chunk_count_(chunk_count) {}
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data(chunk_size, chunk_index);
return batch_data;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
size_t chunk_count_;
};
const size_t prefetch_count = 1;
const size_t cache_size = 10;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t cross_chunk_shuffle_counts[] = {2, 3};
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t chunk_counts[] = {3, 4, 5};
samplers::SequentialSampler chunk_sampler(0);
S example_sampler(0);
for (auto chunk_count : chunk_counts) {
for (auto cross_chunk_shuffle_count : cross_chunk_shuffle_counts) {
D data_reader(chunk_count);
datasets::SharedBatchDataset<
datasets::ChunkDataset<D, samplers::SequentialSampler, S>>
dataset = datasets::make_shared_dataset<
datasets::ChunkDataset<D, samplers::SequentialSampler, S>>(
data_reader,
chunk_sampler,
example_sampler,
datasets::ChunkDatasetOptions(
prefetch_count,
batch_size,
cache_size,
cross_chunk_shuffle_count));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
std::vector<int> result;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
auto batch_result = *iterator;
std::copy(
batch_result.begin(),
batch_result.end(),
std::back_inserter(result));
}
std::vector<int> expected_result;
{
// construct expected result
for (const auto i : c10::irange(
(chunk_count + cross_chunk_shuffle_count - 1) /
cross_chunk_shuffle_count)) {
for (const auto j : c10::irange(chunk_size)) {
(void)j; // Suppress unused variable warning
for (const auto k : c10::irange(cross_chunk_shuffle_count)) {
if (i * cross_chunk_shuffle_count + k < chunk_count) {
expected_result.push_back(i * cross_chunk_shuffle_count + k);
}
}
}
}
}
ASSERT_EQ(result.size(), expected_result.size());
ASSERT_TRUE(
std::equal(result.begin(), result.end(), expected_result.begin()));
}
}
}
TEST(DataLoaderTest, CustomPreprocessPolicy) {
const size_t chunk_size = 5;
const size_t batch_size = 10;
struct D : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
D(size_t chunk_count) : chunk_count_(chunk_count) {}
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data(chunk_size);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,clang-analyzer-security.insecureAPI.rand)
auto rand_gen = []() { return std::rand() % 100; };
std::generate(batch_data.begin(), batch_data.end(), rand_gen);
return batch_data;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
size_t chunk_count_;
};
// custom preprocessing policy - sort the data ascendingly
auto sorting_policy = [](std::vector<int>& raw_batch_data) {
std::sort(raw_batch_data.begin(), raw_batch_data.end());
};
std::function<void(std::vector<int>&)> policy_function = sorting_policy;
const size_t prefetch_count = 1;
const size_t cache_size = 10;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t cross_chunk_shuffle_counts[] = {1, 2};
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const size_t chunk_counts[] = {3, 4};
samplers::SequentialSampler chunk_sampler(0);
for (auto chunk_count : chunk_counts) {
for (auto cross_chunk_shuffle_count : cross_chunk_shuffle_counts) {
D data_reader(chunk_count);
datasets::SharedBatchDataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
chunk_sampler,
chunk_sampler,
datasets::ChunkDatasetOptions(
prefetch_count,
batch_size,
cache_size,
cross_chunk_shuffle_count),
policy_function);
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
std::vector<int> result;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
auto batch_result = *iterator;
if (batch_result.size() > chunk_size * cross_chunk_shuffle_count) {
for (unsigned i = 0; i < batch_result.size(); i += chunk_size) {
ASSERT_TRUE(std::is_sorted(
batch_result.begin() + i,
batch_result.begin() + i + chunk_size));
}
} else {
ASSERT_TRUE(std::is_sorted(batch_result.begin(), batch_result.end()));
}
}
}
}
}