| #include <gtest/gtest.h> |
| |
| #include <c10/util/irange.h> |
| #include <torch/torch.h> |
| |
| #include <test/cpp/api/init_baseline.h> |
| #include <test/cpp/api/support.h> |
| |
| #include <functional> |
| #include <vector> |
| |
| void check_exact_values( |
| const std::vector<torch::Tensor>& parameters, |
| const std::vector<std::vector<torch::Tensor>>& expected_parameters) { |
| ASSERT_EQ(parameters.size(), expected_parameters.size()); |
| |
| for (const auto i : c10::irange(parameters.size())) { |
| auto layerParameters = parameters[i]; |
| auto expectedLayerParameters = expected_parameters[i]; |
| |
| if (static_cast<size_t>(layerParameters.size(0)) != |
| expectedLayerParameters.size()) { |
| std::cout << "layer #" << i |
| << " layerParameters size: " << layerParameters.size(0) |
| << " != " |
| << " expectedLayerParameters size: " |
| << expectedLayerParameters.size() << std::endl; |
| ASSERT_TRUE(false); |
| } |
| |
| for (const auto p : c10::irange(layerParameters.size(0))) { |
| // Always compare using double dtype, regardless of the original dtype of |
| // the tensors |
| auto tensor = layerParameters[p].to(torch::kFloat64); |
| auto expectedTensor = expectedLayerParameters[p].to(torch::kFloat64); |
| |
| if (!tensor.allclose(expectedTensor, /*rtol=*/1e-3, /*atol=*/5e-4)) { |
| std::cout << "layer " << i << ": " << tensor << " != " << expectedTensor |
| << " (parameter " << p << ")" << std::endl; |
| ASSERT_TRUE(false); |
| } |
| } |
| } |
| } |
| |
| void check_initializer_against_baseline( |
| std::function<void(torch::Tensor)> initializer, |
| std::vector<std::vector<torch::Tensor>> expected) { |
| torch::manual_seed(0); |
| |
| auto layer1 = torch::nn::Linear(7, 15); |
| initializer(layer1->weight); |
| layer1->to(torch::kFloat64); |
| |
| auto layer2 = torch::nn::Linear(15, 15); |
| initializer(layer2->weight); |
| layer2->to(torch::kFloat64); |
| |
| auto layer3 = torch::nn::Linear(15, 2); |
| initializer(layer3->weight); |
| layer3->to(torch::kFloat64); |
| |
| auto parameters = std::vector<torch::Tensor>{ |
| layer1->weight, |
| layer2->weight, |
| layer3->weight, |
| }; |
| |
| check_exact_values(parameters, expected); |
| } |
| |
| TEST(InitTest, ProducesPyTorchValues_XavierUniform) { |
| auto expected = expected_parameters::Xavier_Uniform(); |
| auto initializer = [](torch::Tensor tensor) { |
| torch::nn::init::xavier_uniform_(tensor); |
| }; |
| check_initializer_against_baseline(initializer, expected); |
| } |
| |
| TEST(InitTest, ProducesPyTorchValues_XavierNormal) { |
| auto expected = expected_parameters::Xavier_Normal(); |
| auto initializer = [](torch::Tensor tensor) { |
| torch::nn::init::xavier_normal_(tensor); |
| }; |
| check_initializer_against_baseline(initializer, expected); |
| } |
| |
| TEST(InitTest, ProducesPyTorchValues_KaimingNormal) { |
| auto expected = expected_parameters::Kaiming_Normal(); |
| auto initializer = [](torch::Tensor tensor) { |
| torch::nn::init::kaiming_normal_(tensor); |
| }; |
| check_initializer_against_baseline(initializer, expected); |
| } |
| |
| TEST(InitTest, ProducesPyTorchValues_KaimingUniform) { |
| auto expected = expected_parameters::Kaiming_Uniform(); |
| auto initializer = [](torch::Tensor tensor) { |
| torch::nn::init::kaiming_uniform_(tensor); |
| }; |
| check_initializer_against_baseline(initializer, expected); |
| } |
| |
| TEST(InitTest, CanInitializeTensorThatRequiresGrad) { |
| auto tensor = torch::empty({3, 4}, torch::requires_grad()); |
| ASSERT_THROWS_WITH( |
| tensor.fill_(1), |
| "a leaf Variable that requires grad " |
| "is being used in an in-place operation"); |
| ASSERT_EQ(torch::nn::init::ones_(tensor).sum().item<int32_t>(), 12); |
| } |
| |
| TEST(InitTest, CalculateGainWithTanh) { |
| double gain = torch::nn::init::calculate_gain(torch::kTanh); |
| ASSERT_DOUBLE_EQ(gain, 5.0 / 3.0); |
| } |
| |
| TEST(InitTest, CalculateGainWithRelu) { |
| double gain = torch::nn::init::calculate_gain(torch::kReLU); |
| ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0)); |
| } |
| |
| TEST(InitTest, CalculateGainWithLeakyRelu) { |
| double gain = torch::nn::init::calculate_gain(torch::kLeakyReLU); |
| ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0 / (1 + pow(0.01, 2)))); |
| } |
| |
| TEST(InitTest, CanInitializeCnnWithOrthogonal) { |
| torch::nn::Conv2d conv_layer(torch::nn::Conv2dOptions(3, 2, 3).stride(2)); |
| torch::nn::init::orthogonal_(conv_layer->named_parameters()["weight"]); |
| } |