blob: 345b6be3195d473cf75e60faa48f357f881fa65d [file] [log] [blame]
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <torch/torch.h>
#include <test/cpp/api/init_baseline.h>
#include <test/cpp/api/support.h>
#include <functional>
#include <vector>
void check_exact_values(
const std::vector<torch::Tensor>& parameters,
const std::vector<std::vector<torch::Tensor>>& expected_parameters) {
ASSERT_EQ(parameters.size(), expected_parameters.size());
for (const auto i : c10::irange(parameters.size())) {
auto layerParameters = parameters[i];
auto expectedLayerParameters = expected_parameters[i];
if (static_cast<size_t>(layerParameters.size(0)) !=
expectedLayerParameters.size()) {
std::cout << "layer #" << i
<< " layerParameters size: " << layerParameters.size(0)
<< " != "
<< " expectedLayerParameters size: "
<< expectedLayerParameters.size() << std::endl;
ASSERT_TRUE(false);
}
for (const auto p : c10::irange(layerParameters.size(0))) {
// Always compare using double dtype, regardless of the original dtype of
// the tensors
auto tensor = layerParameters[p].to(torch::kFloat64);
auto expectedTensor = expectedLayerParameters[p].to(torch::kFloat64);
if (!tensor.allclose(expectedTensor, /*rtol=*/1e-3, /*atol=*/5e-4)) {
std::cout << "layer " << i << ": " << tensor << " != " << expectedTensor
<< " (parameter " << p << ")" << std::endl;
ASSERT_TRUE(false);
}
}
}
}
void check_initializer_against_baseline(
std::function<void(torch::Tensor)> initializer,
std::vector<std::vector<torch::Tensor>> expected) {
torch::manual_seed(0);
auto layer1 = torch::nn::Linear(7, 15);
initializer(layer1->weight);
layer1->to(torch::kFloat64);
auto layer2 = torch::nn::Linear(15, 15);
initializer(layer2->weight);
layer2->to(torch::kFloat64);
auto layer3 = torch::nn::Linear(15, 2);
initializer(layer3->weight);
layer3->to(torch::kFloat64);
auto parameters = std::vector<torch::Tensor>{
layer1->weight,
layer2->weight,
layer3->weight,
};
check_exact_values(parameters, expected);
}
TEST(InitTest, ProducesPyTorchValues_XavierUniform) {
auto expected = expected_parameters::Xavier_Uniform();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::xavier_uniform_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, ProducesPyTorchValues_XavierNormal) {
auto expected = expected_parameters::Xavier_Normal();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::xavier_normal_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, ProducesPyTorchValues_KaimingNormal) {
auto expected = expected_parameters::Kaiming_Normal();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::kaiming_normal_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, ProducesPyTorchValues_KaimingUniform) {
auto expected = expected_parameters::Kaiming_Uniform();
auto initializer = [](torch::Tensor tensor) {
torch::nn::init::kaiming_uniform_(tensor);
};
check_initializer_against_baseline(initializer, expected);
}
TEST(InitTest, CanInitializeTensorThatRequiresGrad) {
auto tensor = torch::empty({3, 4}, torch::requires_grad());
ASSERT_THROWS_WITH(
tensor.fill_(1),
"a leaf Variable that requires grad "
"is being used in an in-place operation");
ASSERT_EQ(torch::nn::init::ones_(tensor).sum().item<int32_t>(), 12);
}
TEST(InitTest, CalculateGainWithTanh) {
double gain = torch::nn::init::calculate_gain(torch::kTanh);
ASSERT_DOUBLE_EQ(gain, 5.0 / 3.0);
}
TEST(InitTest, CalculateGainWithRelu) {
double gain = torch::nn::init::calculate_gain(torch::kReLU);
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0));
}
TEST(InitTest, CalculateGainWithLeakyRelu) {
double gain = torch::nn::init::calculate_gain(torch::kLeakyReLU);
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0 / (1 + pow(0.01, 2))));
}
TEST(InitTest, CanInitializeCnnWithOrthogonal) {
torch::nn::Conv2d conv_layer(torch::nn::Conv2dOptions(3, 2, 3).stride(2));
torch::nn::init::orthogonal_(conv_layer->named_parameters()["weight"]);
}