blob: 350ccb301638faa690244baf19b31425c658f081 [file] [log] [blame]
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <cuda_runtime.h>
#include <benchmarks/cpp/nvfuser/utils.h>
using namespace torch::jit::fuser::cuda;
//------------------------------------------------------------------------------
static void setupSoftmax(
Fusion* fusion,
DataType dtype,
const int reduction_axis) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
FusionGuard fg(fusion);
// setup fusion
auto input = makeContigTensor(2, dtype);
fusion->addInput(input);
if (dtype == DataType::Half) {
input = castOp(DataType::Float, input);
}
auto output = softmax(input, reduction_axis);
if (dtype == DataType::Half) {
output = castOp(DataType::Half, output);
}
fusion->addOutput(output);
}
static void NvFuserScheduler_Softmax(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
DataType dtype,
const int reduction_axis) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
auto reduction_size = benchmark_state.range(0);
auto iter_size = benchmark_state.range(1);
at::Tensor aten_input =
(reduction_axis ? at::randn({iter_size, reduction_size}, options)
: at::randn({reduction_size, iter_size}, options));
std::vector<c10::IValue> aten_inputs({aten_input});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
(2 * aten_input.numel() * int64_t(dataTypeSize(dtype))));
}
// Warp softmax comparison
static void Softmax_WarpReduceReference(benchmark::State& benchmark_state) {
auto dtype = DataType::Float;
std::vector<int64_t> input_shape{
benchmark_state.range(0), benchmark_state.range(1)};
auto fusion_ptr = std::make_unique<Fusion>();
auto fusion = fusion_ptr.get();
FusionGuard fg(fusion);
setupSoftmax(fusion, dtype, 1);
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor aten_input = at::randn(input_shape, options);
std::vector<c10::IValue> aten_inputs({aten_input});
// Schedule through magic scheduler:
SchedulerRuntimeInfo runtime_info(fusion, aten_inputs, true);
TORCH_INTERNAL_ASSERT(SchedulerEntry::canSchedule(
ScheduleHeuristic::Persistent, fusion, runtime_info));
auto scheduler = SchedulerEntry::makeEntry(
ScheduleHeuristic::Persistent, fusion, runtime_info);
scheduler->schedule(fusion);
FusionExecutor fe;
fe.compileFusion(fusion);
auto outputs = fe.runFusion(aten_inputs);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
for (auto _ : benchmark_state) {
clearL2Cache();
auto outputs = fe.runFusion(aten_inputs);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
C10_CUDA_CHECK(cudaDeviceSynchronize());
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
(2 * aten_input.numel() * int64_t(dataTypeSize(dtype))));
}
static void Softmax_WarpReduce(benchmark::State& benchmark_state) {
auto dtype = DataType::Float;
std::vector<int64_t> input_shape{
benchmark_state.range(0), benchmark_state.range(1)};
auto fusion_ptr = std::make_unique<Fusion>();
auto fusion = fusion_ptr.get();
FusionGuard fg(fusion);
setupSoftmax(fusion, dtype, 1);
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor aten_input = at::randn(input_shape, options);
std::vector<c10::IValue> aten_inputs({aten_input});
// Schedule through magic scheduler:
SchedulerRuntimeInfo runtime_info(fusion, aten_inputs, true);
TORCH_INTERNAL_ASSERT(SchedulerEntry::canSchedule(
ScheduleHeuristic::Persistent, fusion, runtime_info));
auto scheduler = SchedulerEntry::makeEntry(
ScheduleHeuristic::Persistent, fusion, runtime_info);
scheduler->schedule(fusion);
// Modify the schedule to use warp reduction
auto used_vals = fusion->usedMathVals();
for (auto tv : ir_utils::filterByType<TensorView>(used_vals)) {
for (IterDomain* id : tv->domain()->domain()) {
if (id->getParallelType() == ParallelType::TIDx) {
id->padToMultipleOfWarp();
}
}
}
FusionExecutor fe;
fe.compileFusion(fusion);
auto outputs = fe.runFusion(aten_inputs);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
for (auto _ : benchmark_state) {
clearL2Cache();
auto outputs = fe.runFusion(aten_inputs);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
C10_CUDA_CHECK(cudaDeviceSynchronize());
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
(2 * aten_input.numel() * int64_t(dataTypeSize(dtype))));
}
BENCHMARK(Softmax_WarpReduce)
->RangeMultiplier(2)
->Ranges({{8, 8}, {16 * 197, 16 * 197}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Softmax_WarpReduceReference)
->RangeMultiplier(2)
->Ranges({{8, 8}, {16 * 197, 16 * 197}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
static void Baseline_Softmax(
benchmark::State& benchmark_state,
DataType dtype,
const int reduction_axis) {
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
auto reduction_size = benchmark_state.range(0);
auto iter_size = benchmark_state.range(1);
at::Tensor aten_input =
(reduction_axis ? at::randn({iter_size, reduction_size}, options)
: at::randn({reduction_size, iter_size}, options));
for (auto _ : benchmark_state) {
clearL2Cache();
CudaKernelTimer timer;
auto output = at::_softmax(aten_input, reduction_axis, false);
benchmark_state.SetIterationTime(timer.elapsed() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
C10_CUDA_CHECK(cudaDeviceSynchronize());
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
(2 * aten_input.numel() * int64_t(dataTypeSize(dtype))));
}
static void Baseline_Softmax_Outer_fp32(benchmark::State& benchmark_state) {
Baseline_Softmax(benchmark_state, DataType::Float, 0);
}
static void Baseline_Softmax_Inner_fp32(benchmark::State& benchmark_state) {
Baseline_Softmax(benchmark_state, DataType::Float, 1);
}
static void Baseline_Softmax_Outer_fp16(benchmark::State& benchmark_state) {
Baseline_Softmax(benchmark_state, DataType::Half, 0);
}
static void Baseline_Softmax_Inner_fp16(benchmark::State& benchmark_state) {
Baseline_Softmax(benchmark_state, DataType::Half, 1);
}
//------------------------------------------------------------------------------
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_Softmax_Outer_fp32,
setupSoftmax,
NvFuserScheduler_Softmax,
DataType::Float,
0);
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_Softmax_Inner_fp32,
setupSoftmax,
NvFuserScheduler_Softmax,
DataType::Float,
1);
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_Softmax_Outer_fp16,
setupSoftmax,
NvFuserScheduler_Softmax,
DataType::Half,
0);
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_Softmax_Inner_fp16,
setupSoftmax,
NvFuserScheduler_Softmax,
DataType::Half,
1);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
BENCHMARK(Baseline_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Outer_fp32)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Outer_fp16)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp32)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{1, 1024 * 1024}, {160, 320}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{32768, 32 * 1024 * 1024}, {2, 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 16}, {32768, 32 * 1024 * 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_Softmax_Inner_fp16)
// ->RangeMultiplier(2)
->Ranges({{128, 1024 * 16}, {128, 1024 * 16}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();