blob: 5fec9dcb28db56f04d8656e2fd53d07e60e76c30 [file] [log] [blame]
#pragma once
#include "caffe2/onnx/backend_rep.h"
#include "caffe2/onnx/device.h"
#include "caffe2/onnx/helper.h"
#include "caffe2/proto/caffe2_pb.h"
#include "onnx/onnx_pb.h"
#include <functional>
#include <string>
#include <unordered_map>
#include <unordered_set>
constexpr int kKnownOpsetVersion = 9;
namespace caffe2 {
namespace onnx {
using ::ONNX_NAMESPACE::AttributeProto;
using ::ONNX_NAMESPACE::GraphProto;
using ::ONNX_NAMESPACE::ModelProto;
using ::ONNX_NAMESPACE::NodeProto;
using ::ONNX_NAMESPACE::TensorProto;
using ::ONNX_NAMESPACE::ValueInfoProto;
using ValueInfoMap = std::unordered_map<std::string, ValueInfoProto>;
class TORCH_API ConversionContext {
public:
ConversionContext(const ValueInfoMap& value_infos, int opset_version)
: value_infos_(value_infos), opset_version_(opset_version) {}
const ValueInfoMap& value_infos() const {
return value_infos_;
}
int opset_version() const {
return opset_version_;
}
private:
const ValueInfoMap& value_infos_;
const int opset_version_;
};
// \brief This struct holds the converted ops after the onnx->c2 conversion.
// Notice that for RNN ops, it may create ops in init_net. Hence we have the
// `init_ops` field.
struct TORCH_API Caffe2Ops {
::google::protobuf::RepeatedPtrField<caffe2::OperatorDef> init_ops;
::google::protobuf::RepeatedPtrField<caffe2::OperatorDef> ops;
::google::protobuf::RepeatedPtrField<std::string> interface_blobs;
};
// A convenient class to query attributes of a NodeProto. Note that the
// NodeProto can not be modified during the query of OnnxAttributes object
class TORCH_API OnnxAttributes {
public:
OnnxAttributes(const NodeProto& node);
bool HasAttribute(const std::string& key) const {
return onnx_attrs_.count(key);
}
AttributeProto* AddRewrittenAttribute(const std::string& key) {
auto tmp = rewritten_onnx_attrs_.emplace(key, AttributeProto());
auto& attr = tmp.first->second;
attr.set_name(key);
return &attr;
}
::google::protobuf::RepeatedPtrField<caffe2::Argument> OnnxAttrToCaffe2Arg(
std::function<std::string(const std::string&)> mapper) const;
// Get attribute given attribute name, specialied on data type T. Note that
// the return value is copied
template <typename T>
T get(const std::string& key) const;
template <typename T>
T get(const std::string& key, const T& default_value) const {
if (onnx_attrs_.count(key)) {
return get<T>(key);
} else {
return default_value;
}
}
const AttributeProto* remove(const std::string& key) {
const AttributeProto* result = nullptr;
auto iter = onnx_attrs_.find(key);
if (iter != onnx_attrs_.end()) {
result = iter->second;
onnx_attrs_.erase(iter);
}
return result;
}
private:
std::unordered_map<std::string, const AttributeProto*> onnx_attrs_;
std::unordered_map<std::string, AttributeProto> rewritten_onnx_attrs_;
};
template <>
int64_t OnnxAttributes::get(const std::string& key) const;
template <>
float OnnxAttributes::get(const std::string& key) const;
template <>
::google::protobuf::RepeatedPtrField<std::string> OnnxAttributes::get(
const std::string& key) const;
template <>
::google::protobuf::RepeatedField<::google::protobuf::int64>
OnnxAttributes::get(const std::string& key) const;
template <>
::google::protobuf::RepeatedField<float> OnnxAttributes::get(
const std::string& key) const;
template <>
const TensorProto* OnnxAttributes::get(const std::string& key) const;
// convenient class for onnx node
struct TORCH_API OnnxNode {
OnnxNode(const NodeProto& node_in) : node(node_in), attributes(node_in) {}
const NodeProto& node;
OnnxAttributes attributes;
};
class TORCH_API Caffe2Backend {
public:
// Since we still have this Python-C++ hybrid flow, we will need to take the
// DummyName generator from Python as a pointer. In this case, Python env owns
// the DummyName object and we don't need to keep track of its life time in
// C++. Therefore in this case, we use a null dtor to prevent C++ shared_ptr
// from releasing the object
Caffe2Backend(DummyName* dummy = nullptr) {
if (dummy) {
dummy_ = std::shared_ptr<DummyName>(dummy, [](DummyName*) {});
} else {
dummy_ = std::make_shared<DummyName>();
}
}
Caffe2BackendRep* Prepare(
const std::string& onnx_model_str,
const std::string& device,
const std::vector<Caffe2Ops>& extras);
bool SupportOp(const std::string tyep) const;
Caffe2Ops ConvertNode(
const std::string& node_str,
const ConversionContext& ctx);
void BuildTensorFillingOp(
caffe2::OperatorDef* c2_op,
const TensorProto& onnx_tensor,
const std::string& output_name = "",
const std::string& shape_name = "");
private:
using SpecialOpConverter =
Caffe2Ops (Caffe2Backend::*)(OnnxNode*, const ConversionContext&);
void OnnxToCaffe2(
caffe2::NetDef* init_net,
caffe2::NetDef* pred_net,
const ModelProto& onnx_model,
const std::string& device,
int opset_version,
bool include_initializers,
const std::vector<Caffe2Ops>& extras);
void CheckOpSchemaArguments(
const caffe2::OpSchema& schema,
const caffe2::OperatorDef& op);
Caffe2Ops OnnxNodeToCaffe2Ops(
const ModelProto& init_model,
const ModelProto& pred_model,
const ConversionContext& ctx,
OnnxNode* onnx_node);
std::unordered_set<std::string> AllNamesInGraph(const GraphProto& graph);
Caffe2Ops CommonOnnxNodeToCaffe2Ops(
OnnxNode* onnx_node,
const ConversionContext& ctx);
Caffe2Ops CreateArgMaxMin(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateCast(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateConstant(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateConstantOfShape(
OnnxNode* onnx_node,
const ConversionContext& ctx);
Caffe2Ops CreateConvPoolOpBase(
OnnxNode* onnx_node,
const ConversionContext& ctx);
Caffe2Ops CreatePadPool(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateReshape(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateGather(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateGemm(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreatePad(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateConcat(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateLogSoftmax(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateSlice(OnnxNode* onnx_node, const ConversionContext& ctx);
std::string PreprocessSliceIndexTensor(
OnnxNode* onnx_node,
Caffe2Ops& ret,
std::string indices_tensor,
std::string axes_tensor,
std::string rank_tensor,
std::string zero_tensor,
std::string one_tensor,
int default_value);
Caffe2Ops CreateDynamicSlice(
OnnxNode* onnx_node,
const ConversionContext& ctx);
Caffe2Ops CreateSplit(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateReciprocal(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateRandomNormal(
OnnxNode* onnx_node,
const ConversionContext& ctx);
Caffe2Ops CreateWhereOp(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateNonZeroOp(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateMultinomialOp(
OnnxNode* onnx_node,
const ConversionContext& ctx);
Caffe2Ops CreateBatchNormalization(
OnnxNode* onnx_node,
const ConversionContext& ctx);
Caffe2Ops CreateMatMul(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateUpsample(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateDropout(OnnxNode* onnx_node, const ConversionContext& ctx);
Caffe2Ops CreateLRN(OnnxNode* onnx_node, const ConversionContext& ctx);
// LUT related getters
const std::unordered_map<std::string, std::string>& get_renamed_operators()
const;
const std::unordered_set<std::string>& get_rnn_operators() const;
const std::unordered_map<std::string, int>& get_broken_operators() const;
const std::unordered_map<std::string, std::string>& get_renamed_attrs() const;
const std::
unordered_map<std::string, std::unordered_map<std::string, std::string>>&
get_per_op_renamed_attrs() const;
const std::unordered_map<std::string, Caffe2Backend::SpecialOpConverter>&
get_special_operators() const;
// Dummy name generator
std::shared_ptr<DummyName> dummy_;
};
} // namespace onnx
} // namespace caffe2