| #ifndef CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_ |
| #define CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_ |
| |
| #include <string> |
| |
| #include "caffe2/core/context.h" |
| #include "caffe2/core/logging.h" |
| #include "caffe2/core/operator.h" |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| template <typename T, class Context> |
| class AffineChannelOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| |
| template <class... Args> |
| explicit AffineChannelOp(Args&&... args) |
| : Operator<Context>(std::forward<Args>(args)...), |
| order_(StringToStorageOrder( |
| this->template GetSingleArgument<std::string>("order", "NCHW"))), |
| OP_SINGLE_ARG(bool, "is_learnable", is_learnable_, false) { |
| CAFFE_ENFORCE_NE(order_, StorageOrder::UNKNOWN); |
| } |
| |
| bool RunOnDevice() override { |
| return order_ == StorageOrder::NCHW ? RunOnDeviceWithOrderNCHW() |
| : RunOnDeviceWithOrderNHWC(); |
| } |
| |
| bool RunOnDeviceWithOrderNCHW() { |
| const auto& X = Input(0); |
| const auto& scale = Input(1); |
| const auto& bias = Input(2); |
| |
| if (is_learnable_) { |
| CAFFE_ENFORCE( |
| !IsInputOutputAlias(0, 0), |
| "In-place affine_channel_op is not supported when " |
| "is_learnable = true."); |
| } |
| const int N = X.dim32(0); |
| const int C = X.dim32(1); |
| const int HxW = X.numel() / (N * C); |
| auto* Y = Output(0, X.sizes(), at::dtype<T>()); |
| math::AffineChannel<T, Context, StorageOrder::NCHW>( |
| N, |
| C, |
| HxW, |
| X.template data<T>(), |
| scale.template data<T>(), |
| bias.template data<T>(), |
| Y->template mutable_data<T>(), |
| &context_); |
| return true; |
| } |
| |
| bool RunOnDeviceWithOrderNHWC() { |
| const auto& X = Input(0); |
| const auto& scale = Input(1); |
| const auto& bias = Input(2); |
| |
| if (is_learnable_) { |
| CAFFE_ENFORCE( |
| !IsInputOutputAlias(0, 0), |
| "In-place affine_channel_op is not supported when " |
| "is_learnable = true."); |
| } |
| const int ndim = X.dim(); |
| const int N = X.dim32(0); |
| const int C = X.dim32(ndim - 1); |
| const int HxW = X.numel() / (N * C); |
| auto* Y = Output(0, X.sizes(), at::dtype<T>()); |
| math::AffineChannel<T, Context, StorageOrder::NHWC>( |
| N, |
| C, |
| HxW, |
| X.template data<T>(), |
| scale.template data<T>(), |
| bias.template data<T>(), |
| Y->template mutable_data<T>(), |
| &context_); |
| return true; |
| } |
| |
| private: |
| const StorageOrder order_; |
| const bool is_learnable_; |
| }; |
| |
| template <typename T, class Context> |
| class AffineChannelGradientOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| |
| template <class... Args> |
| explicit AffineChannelGradientOp(Args&&... args) |
| : Operator<Context>(std::forward<Args>(args)...), |
| order_(StringToStorageOrder( |
| this->template GetSingleArgument<std::string>("order", "NCHW"))), |
| OP_SINGLE_ARG(bool, "is_learnable", is_learnable_, false) { |
| CAFFE_ENFORCE_NE(order_, StorageOrder::UNKNOWN); |
| } |
| |
| bool RunOnDevice() override { |
| return order_ == StorageOrder::NCHW ? RunOnDeviceWithOrderNCHW() |
| : RunOnDeviceWithOrderNHWC(); |
| } |
| |
| bool RunOnDeviceWithOrderNCHW(); |
| |
| bool RunOnDeviceWithOrderNHWC(); |
| |
| private: |
| const StorageOrder order_; |
| const bool is_learnable_; |
| }; |
| |
| } // namespace caffe2 |
| |
| #endif // CAFFE2_OPERATORS_AFFINE_CHANNEL_OP_H_ |