| #include "caffe2/operators/elementwise_ops_utils.h" |
| |
| namespace caffe2 { |
| namespace elementwise_ops_utils { |
| |
| std::tuple<size_t, size_t, size_t> |
| ComputeLegacyBroadcastSizes(const Tensor& A, const Tensor& B, int axis) { |
| CAFFE_ENFORCE_GE( |
| A.dim(), |
| B.dim(), |
| "If you are doing broadcasting, input1 should have " |
| "a smaller or equal number of dimensions."); |
| if (axis == -1) { |
| axis = A.dim() - B.dim(); |
| } |
| CAFFE_ENFORCE( |
| axis >= 0 && axis <= A.dim() - B.dim(), |
| "Broadcast axis should be in the range of" |
| "[0, A.ndim() - B.ndim()], but axis = ", |
| axis); |
| |
| int b_dim_start = 0; |
| while (b_dim_start < B.dim() && B.size(b_dim_start) == 1) { |
| ++b_dim_start; |
| } |
| int b_dim_end = B.dim() - 1; |
| while (b_dim_end >= b_dim_start && B.size(b_dim_end) == 1) { |
| --b_dim_end; |
| } |
| size_t pre = 1, n = 1, post = 1; |
| for (int i = 0; i < axis + b_dim_start; ++i) { |
| pre *= A.size(i); |
| } |
| for (int i = b_dim_start; i <= b_dim_end; ++i) { |
| CAFFE_ENFORCE_EQ( |
| A.size(i + axis), B.size(i), "Broadcast dimension mismatch."); |
| n *= B.size(i); |
| } |
| for (int i = axis + b_dim_end + 1; i < A.dim(); ++i) { |
| post *= A.size(i); |
| } |
| return std::make_tuple(pre, n, post); |
| } |
| |
| std::vector<int> ComputeBinaryBroadcastForwardDims( |
| const c10::ArrayRef<int>& A_dims, |
| const c10::ArrayRef<int>& B_dims) { |
| const int ndim = std::max(A_dims.size(), B_dims.size()); |
| std::vector<int> C_dims(ndim); |
| // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions) |
| int i = A_dims.size() - 1; |
| // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions) |
| int j = B_dims.size() - 1; |
| int k = ndim - 1; |
| for (; i >= 0 && j >= 0; --k) { |
| const int A_dim = A_dims[i]; |
| const int B_dim = B_dims[j]; |
| CAFFE_ENFORCE( |
| A_dim == B_dim || A_dim == 1 || B_dim == 1, |
| "A_dim: ", |
| A_dim, |
| ",B_dim: ", |
| B_dim); |
| if (A_dim == 0 || B_dim == 0) { |
| C_dims[k] = 0; |
| } else { |
| C_dims[k] = std::max(A_dims[i], B_dims[j]); |
| } |
| --i; |
| --j; |
| } |
| for (; i >= 0; --i) { |
| C_dims[k--] = A_dims[i]; |
| } |
| for (; j >= 0; --j) { |
| C_dims[k--] = B_dims[j]; |
| } |
| return C_dims; |
| } |
| |
| void ComputeBinaryBroadcastBackwardAxes( |
| const std::vector<int>& A_dims, |
| const std::vector<int>& B_dims, |
| std::vector<int>* A_axes, |
| std::vector<int>* B_axes) { |
| A_axes->clear(); |
| B_axes->clear(); |
| const int ndim = std::max(A_dims.size(), B_dims.size()); |
| // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions) |
| int i = A_dims.size() - 1; |
| // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions) |
| int j = B_dims.size() - 1; |
| int k = ndim - 1; |
| for (; i >= 0 && j >= 0; --k) { |
| CAFFE_ENFORCE(A_dims[i] == B_dims[j] || A_dims[i] == 1 || B_dims[j] == 1); |
| if (A_dims[i] != B_dims[j]) { |
| if (A_dims[i] == 1) { |
| A_axes->push_back(k); |
| } |
| if (B_dims[j] == 1) { |
| B_axes->push_back(k); |
| } |
| } |
| --i; |
| --j; |
| } |
| if (i < 0) { |
| for (; k >= 0; --k) { |
| A_axes->push_back(k); |
| } |
| } else { |
| for (; k >= 0; --k) { |
| B_axes->push_back(k); |
| } |
| } |
| std::reverse(A_axes->begin(), A_axes->end()); |
| std::reverse(B_axes->begin(), B_axes->end()); |
| } |
| |
| void ComputeBinaryBroadcastBackwardDims( |
| const std::vector<int>& A_dims, |
| const std::vector<int>& B_dims, |
| std::vector<int>* A_back_dims, |
| std::vector<int>* B_back_dims) { |
| const int ndim = std::max(A_dims.size(), B_dims.size()); |
| A_back_dims->assign(ndim, 1); |
| B_back_dims->assign(ndim, 1); |
| std::copy(A_dims.crbegin(), A_dims.crend(), A_back_dims->rbegin()); |
| std::copy(B_dims.crbegin(), B_dims.crend(), B_back_dims->rbegin()); |
| } |
| |
| } // namespace elementwise_ops_utils |
| } // namespace caffe2 |