blob: fd0ba37e4965c3e4471f1730977c3cc2541e9bd5 [file] [log] [blame]
#include "caffe2/operators/log_op.h"
#include <string>
#include <vector>
namespace caffe2 {
REGISTER_CPU_OPERATOR(
Log,
UnaryElementwiseOp<TensorTypes<float>, CPUContext, LogFunctor<CPUContext>>);
OPERATOR_SCHEMA(Log)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Calculates the natural log of the given input tensor ($ln(x)$), element-wise. This
operation can be done in an in-place fashion too, by providing the same input
and output blobs.
Github Link:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/log_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Log",
["X"],
["X"],
)
workspace.FeedBlob("X", (np.random.rand(3,3)).astype(np.float32))
print("X before running op:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("X after running op:", workspace.FetchBlob("X"))
```
**Result**
```
X before running op:
[[0.07341351 0.15404125 0.386613 ]
[0.34090295 0.99727786 0.24141751]
[0.32016268 0.8724168 0.93515724]]
X after running op:
[[-2.6116474 -1.8705349 -0.9503311 ]
[-1.0761575 -0.00272586 -1.4212275 ]
[-1.138926 -0.13648799 -0.06704059]]
```
</details>
)DOC")
.Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.")
.Output(
0,
"Y",
"*(type: Tensor`<float>`)* Output tensor computed as the natural log of the input tensor computed, element-wise.")
.InheritOnnxSchema();
namespace {
class GetLogGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"Div",
"",
std::vector<std::string>{GO(0), I(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(Log, GetLogGradient);
} // namespace caffe2