| #ifndef CAFFE_OPERATORS_ONE_HOT_OPS_H_ |
| #define CAFFE_OPERATORS_ONE_HOT_OPS_H_ |
| |
| #include "caffe2/core/context.h" |
| #include "caffe2/core/export_caffe2_op_to_c10.h" |
| #include "caffe2/core/logging.h" |
| #include "caffe2/core/operator.h" |
| #include "caffe2/utils/math.h" |
| |
| C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(BatchBucketOneHot); |
| |
| namespace caffe2 { |
| |
| template <class Context> |
| class OneHotOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| |
| template <class... Args> |
| explicit OneHotOp(Args&&... args) |
| : Operator<Context>(std::forward<Args>(args)...) {} |
| |
| bool RunOnDevice() override { |
| auto& indices = Input(0); |
| CAFFE_ENFORCE_EQ( |
| indices.dim(), |
| 1, |
| "indices input must be 1D tensor of data type int64_t"); |
| |
| // Index size input must be in CPU context |
| auto& index_size_tensor = this->template Input<Tensor>(1, CPU); |
| CAFFE_ENFORCE_EQ( |
| index_size_tensor.numel(), |
| 1, |
| "index_size_tensor input must be scalar of data type int64_t"); |
| |
| auto batch_size = indices.numel(); |
| auto index_size = *index_size_tensor.template data<int64_t>(); |
| auto one_hots = Output(0); |
| one_hots->Resize(batch_size, index_size); |
| auto output_size = one_hots->numel(); |
| if (output_size == 0) { |
| return true; |
| } |
| |
| DoOneHotOp(batch_size, index_size, indices, one_hots); |
| return true; |
| } |
| |
| protected: |
| void DoOneHotOp( |
| int64_t batch_size, |
| int64_t index_size, |
| const Tensor& indices, |
| Tensor* output); |
| }; |
| |
| template <class Context> |
| class BatchOneHotOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| template <class... Args> |
| explicit BatchOneHotOp(Args&&... args) |
| : Operator<Context>(std::forward<Args>(args)...) {} |
| |
| bool RunOnDevice() override { |
| return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(X)); |
| } |
| |
| template <typename T> |
| bool DoRunWithType(); |
| |
| INPUT_TAGS(X, LENS, VALS); |
| |
| protected: |
| OUTPUT_TAGS(ONE_HOT); |
| |
| private: |
| // allows for fast random access to a given dict and is re-used across runs |
| std::vector<int64_t> valsOffsets_; |
| }; |
| |
| template <class Context> |
| class BatchBucketOneHotOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| template <class... Args> |
| explicit BatchBucketOneHotOp(Args&&... args) |
| : Operator<Context>(std::forward<Args>(args)...) {} |
| |
| bool RunOnDevice() override; |
| |
| protected: |
| INPUT_TAGS(X, LENS, BOUNDARIES); |
| OUTPUT_TAGS(ONE_HOT); |
| }; |
| |
| } // namespace caffe2 |
| |
| #endif // CAFFE_OPERATORS_ONE_HOT_OPS_H_ |