blob: 7f8e77125b9e913e0e79c843740d5122e1bcbf29 [file] [log] [blame]
#include "caffe2/operators/relu_op.h"
#include <algorithm>
#include <functional>
#include <string>
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
template <>
template <typename T>
bool ReluFunctor<CPUContext>::
operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const {
EigenVectorMap<T>(Y, N) = ConstEigenVectorMap<float>(X, N).cwiseMax(T(0));
return true;
}
#ifdef CAFFE2_USE_ACCELERATE
template <>
template <>
bool ReluFunctor<CPUContext>::operator()<float>(
const int N,
const float* X,
float* Y,
CPUContext* /* context */) const {
const float zero = 0.0f;
vDSP_vthres(X, 1, &zero, Y, 1, N);
return true;
}
#endif // CAFFE2_USE_ACCELERATE
template <>
template <typename T>
bool ReluGradientFunctor<CPUContext>::Forward(
const std::vector<int>& Y_dims,
const std::vector<int>& /* dY_dims */,
const T* Y,
const T* dY,
T* dX,
CPUContext* /* context */) const {
const int size = std::accumulate(
// NOLINTNEXTLINE(modernize-use-transparent-functors)
Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>());
EigenVectorArrayMap<T>(dX, size) =
(ConstEigenVectorArrayMap<T>(Y, size) > T(0))
.select(ConstEigenVectorArrayMap<T>(dY, size), T(0));
return true;
}
namespace {
OpSchema::Cost CostInferenceForRelu(
const OperatorDef& def,
const vector<TensorShape>& in) {
struct OpSchema::Cost cost = PointwiseCostInference<0>(def, in);
cost.params_bytes = 0;
return cost;
}
} // namespace
REGISTER_CPU_OPERATOR(
Relu,
UnaryElementwiseOp<
TensorTypes<float>,
CPUContext,
ReluFunctor<CPUContext>>);
REGISTER_CPU_GRADIENT_OPERATOR(
ReluGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CPUContext,
ReluGradientFunctor<CPUContext>>);
// Input: X, output: Y
OPERATOR_SCHEMA(Relu)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.CostInferenceFunction(CostInferenceForRelu)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Applies rectified linear unit operation to the input data element-wise. The Relu operation takes one input $X$, produces one output $Y$, and is defined as:
$$Y = max(0,X)$$
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Relu",
["X"],
["Y"]
)
workspace.FeedBlob("X", np.random.randn(4, 4).astype(np.float32)) // NCHW
print("X:\n", workspace.FetchBlob("X"), "\n")
workspace.RunOperatorOnce(op)
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[-1.4655551 0.64575136 0.7921748 0.4150579 ]
[ 0.41085166 -0.2837964 0.9881425 -1.9300346 ]
[ 0.39705405 0.44639114 0.9940703 0.2926532 ]
[-0.6726489 0.01330667 1.101319 0.33858967]]
Y:
[[0. 0.64575136 0.7921748 0.4150579 ]
[0.41085166 0. 0.9881425 0. ]
[0.39705405 0.44639114 0.9940703 0.2926532 ]
[0. 0.01330667 1.101319 0.33858967]]
```
</details>
)DOC")
.Input(0, "X", "1D input tensor")
.Output(0, "Y", "1D output tensor with same shape as input")
.InheritOnnxSchema();
// Input: Y, dY, output: dX
GRADIENT_OPERATOR_SCHEMA(ReluGradient)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{1, 0}})
.IdenticalTypeAndShapeOfInput(1)
.SetDoc(R"DOC(
ReluGradient takes both Y and dY and uses this to update dX according to the
chain rule and derivatives of the rectified linear function.
)DOC");
namespace {
class GetReluGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
def_.type() + "Gradient",
"",
std::vector<std::string>{O(0), GO(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(Relu, GetReluGradient);
} // namespace caffe2