| #include "caffe2/operators/relu_op.h" |
| |
| #include <algorithm> |
| #include <functional> |
| #include <string> |
| |
| #include "caffe2/utils/eigen_utils.h" |
| |
| namespace caffe2 { |
| |
| template <> |
| template <typename T> |
| bool ReluFunctor<CPUContext>:: |
| operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const { |
| EigenVectorMap<T>(Y, N) = ConstEigenVectorMap<float>(X, N).cwiseMax(T(0)); |
| return true; |
| } |
| |
| #ifdef CAFFE2_USE_ACCELERATE |
| |
| template <> |
| template <> |
| bool ReluFunctor<CPUContext>::operator()<float>( |
| const int N, |
| const float* X, |
| float* Y, |
| CPUContext* /* context */) const { |
| const float zero = 0.0f; |
| vDSP_vthres(X, 1, &zero, Y, 1, N); |
| return true; |
| } |
| |
| #endif // CAFFE2_USE_ACCELERATE |
| |
| template <> |
| template <typename T> |
| bool ReluGradientFunctor<CPUContext>::Forward( |
| const std::vector<int>& Y_dims, |
| const std::vector<int>& /* dY_dims */, |
| const T* Y, |
| const T* dY, |
| T* dX, |
| CPUContext* /* context */) const { |
| const int size = std::accumulate( |
| // NOLINTNEXTLINE(modernize-use-transparent-functors) |
| Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>()); |
| EigenVectorArrayMap<T>(dX, size) = |
| (ConstEigenVectorArrayMap<T>(Y, size) > T(0)) |
| .select(ConstEigenVectorArrayMap<T>(dY, size), T(0)); |
| return true; |
| } |
| |
| namespace { |
| |
| OpSchema::Cost CostInferenceForRelu( |
| const OperatorDef& def, |
| const vector<TensorShape>& in) { |
| struct OpSchema::Cost cost = PointwiseCostInference<0>(def, in); |
| cost.params_bytes = 0; |
| return cost; |
| } |
| |
| } // namespace |
| |
| REGISTER_CPU_OPERATOR( |
| Relu, |
| UnaryElementwiseOp< |
| TensorTypes<float>, |
| CPUContext, |
| ReluFunctor<CPUContext>>); |
| REGISTER_CPU_GRADIENT_OPERATOR( |
| ReluGradient, |
| BinaryElementwiseOp< |
| TensorTypes<float>, |
| CPUContext, |
| ReluGradientFunctor<CPUContext>>); |
| |
| // Input: X, output: Y |
| OPERATOR_SCHEMA(Relu) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .AllowInplace({{0, 0}}) |
| .CostInferenceFunction(CostInferenceForRelu) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| Applies rectified linear unit operation to the input data element-wise. The Relu operation takes one input $X$, produces one output $Y$, and is defined as: |
| |
| $$Y = max(0,X)$$ |
| |
| Github Links: |
| - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.h |
| - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/relu_op.cc |
| |
| <details> |
| |
| <summary> <b>Example</b> </summary> |
| |
| **Code** |
| |
| ``` |
| workspace.ResetWorkspace() |
| |
| op = core.CreateOperator( |
| "Relu", |
| ["X"], |
| ["Y"] |
| ) |
| |
| workspace.FeedBlob("X", np.random.randn(4, 4).astype(np.float32)) // NCHW |
| print("X:\n", workspace.FetchBlob("X"), "\n") |
| |
| workspace.RunOperatorOnce(op) |
| print("Y:\n", workspace.FetchBlob("Y")) |
| |
| ``` |
| |
| **Result** |
| |
| ``` |
| |
| X: |
| [[-1.4655551 0.64575136 0.7921748 0.4150579 ] |
| [ 0.41085166 -0.2837964 0.9881425 -1.9300346 ] |
| [ 0.39705405 0.44639114 0.9940703 0.2926532 ] |
| [-0.6726489 0.01330667 1.101319 0.33858967]] |
| |
| Y: |
| [[0. 0.64575136 0.7921748 0.4150579 ] |
| [0.41085166 0. 0.9881425 0. ] |
| [0.39705405 0.44639114 0.9940703 0.2926532 ] |
| [0. 0.01330667 1.101319 0.33858967]] |
| |
| ``` |
| |
| </details> |
| |
| |
| )DOC") |
| .Input(0, "X", "1D input tensor") |
| .Output(0, "Y", "1D output tensor with same shape as input") |
| .InheritOnnxSchema(); |
| |
| // Input: Y, dY, output: dX |
| GRADIENT_OPERATOR_SCHEMA(ReluGradient) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .AllowInplace({{1, 0}}) |
| .IdenticalTypeAndShapeOfInput(1) |
| .SetDoc(R"DOC( |
| ReluGradient takes both Y and dY and uses this to update dX according to the |
| chain rule and derivatives of the rectified linear function. |
| )DOC"); |
| |
| namespace { |
| |
| class GetReluGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| std::vector<OperatorDef> GetGradientDefs() override { |
| return SingleGradientDef( |
| def_.type() + "Gradient", |
| "", |
| std::vector<std::string>{O(0), GO(0)}, |
| std::vector<std::string>{GI(0)}); |
| } |
| }; |
| |
| } // namespace |
| |
| REGISTER_GRADIENT(Relu, GetReluGradient); |
| |
| } // namespace caffe2 |