| #include "caffe2/operators/sigmoid_op.h" |
| |
| #include "caffe2/utils/eigen_utils.h" |
| |
| namespace caffe2 { |
| |
| template <> |
| template <typename T> |
| bool SigmoidFunctor<CPUContext>:: |
| operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const { |
| EigenVectorArrayMap<T>(Y, N) = |
| T(1) / (T(1) + (-ConstEigenVectorArrayMap<T>(X, N)).exp()); |
| return true; |
| } |
| |
| REGISTER_CPU_OPERATOR( |
| Sigmoid, |
| UnaryElementwiseOp< |
| TensorTypes<float>, |
| CPUContext, |
| SigmoidFunctor<CPUContext>>); |
| |
| // Input: X, output: Y |
| OPERATOR_SCHEMA(Sigmoid) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .AllowInplace({{0, 0}}) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| Apply the Sigmoid function element-wise to the input tensor. This is often used |
| as a non-linear activation function in a neural network. The sigmoid function is |
| defined as: |
| |
| $$Sigmoid(x) = \frac{1}{1+\exp(-x)}$$ |
| |
| Github Links: |
| |
| - https://github.com/pytorch/pytorch/blob/master/caffe2/operators/sigmoid_op.cc |
| |
| |
| <details> |
| |
| <summary> <b>Example</b> </summary> |
| |
| **Code** |
| |
| ``` |
| |
| workspace.ResetWorkspace() |
| |
| op = core.CreateOperator( |
| "Sigmoid", |
| ["X"], |
| ["Y"] |
| ) |
| |
| workspace.FeedBlob("X", np.random.randn(5).astype(np.float32)) |
| print("input:", workspace.FetchBlob("X")) |
| workspace.RunOperatorOnce(op) |
| print("sigmoid:", workspace.FetchBlob("Y")) |
| |
| ``` |
| |
| **Result** |
| |
| ``` |
| |
| input: [ 1.5744036 0.31632107 1.7842269 1.4450722 -2.1726978 ] |
| sigmoid: [0.8284105 0.57842743 0.85621804 0.80923885 0.10222916] |
| |
| ``` |
| |
| </details> |
| |
| |
| )DOC") |
| .Input(0, "X", "*(type: Tensor`<float>`)* Input tensor.") |
| .Output(0, "Y", "*(type: Tensor`<float>`)* Output tensor.") |
| .InheritOnnxSchema(); |
| // Input: Y, dY, output: dX |
| OPERATOR_SCHEMA(SigmoidGradient) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .AllowInplace({{1, 0}}) |
| .IdenticalTypeAndShapeOfInput(1) |
| .SetDoc(R"DOC( |
| SigmoidGradient takes both Y and dY and uses this to update dX according to the |
| chain rule and derivatives of the sigmoid function. |
| )DOC"); |
| |
| } // namespace caffe2 |