blob: dfa7d53b559c99d39ee43dce7e238260e9c74a96 [file] [log] [blame]
from collections import namedtuple
import benchmark_utils
from benchmark_test_generator import _register_test
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
"""Caffe2 performance microbenchmarks.
This module contains Caffe2-specific functionalities for performance
microbenchmarks.
"""
class Caffe2BenchmarkBase:
"""This is a base class used to create Caffe2 operator benchmark"""
tensor_index = 0
test_index = 0
def __init__(self):
self.args = {}
self.user_provided_name = None
self._num_inputs_require_grads = 0
self._pass_count = 0
def _set_backward_test(self, is_backward):
pass
def _device_option(self, device):
"""This method is used to set device option."""
if device not in ["cuda", "cpu"]:
raise ValueError("Missing attrs in configs")
if "cuda" in device:
self.dev = core.DeviceOption(caffe2_pb2.CUDA, 0)
else:
self.dev = core.DeviceOption(caffe2_pb2.CPU)
return self.dev
def tensor(self, shapes, dtype="float32", device="cpu"):
"""A wapper function to create C2 tensor filled with random data.
The name/label of the tensor is returned and it is available
throughout the benchmark execution phase.
Args:
shapes: int or a sequence of ints to defining the shapes of the tensor
dtype: use the dtypes from numpy
(https://docs.scipy.org/doc/numpy/user/basics.types.html)
Return:
C2 tensor of dtype
"""
return self.feed_tensor(benchmark_utils.numpy_random(dtype, *shapes), device)
def feed_tensor(self, tensor, device="cpu"):
"""Similar to tensor, but can supply any data compatible with FeedBlob"""
blob_name = "blob_" + str(Caffe2BenchmarkBase.tensor_index)
dev = self._device_option(device)
with core.DeviceScope(dev):
workspace.FeedBlob(blob_name, tensor)
Caffe2BenchmarkBase.tensor_index += 1
return blob_name
def module_name(self):
"""this is used to label the operator being benchmarked"""
if self.user_provided_name:
return self.user_provided_name
return self.__class__.__name__
def set_module_name(self, name):
self.user_provided_name = name
def _value_to_str(self, value):
"""if value is bool, we will convert it to 0 and 1"""
ret = value
if type(value) == bool:
ret = int(value)
return str(ret)
def test_name(self, name_type="long", **kargs):
"""this is a globally unique name which can be used to
label a specific test
"""
if name_type == "long":
test_name_str = []
for key in kargs:
value = kargs[key]
test_name_str.append(key + self._value_to_str(value))
name = (self.module_name() + "_" + "_".join(test_name_str)).replace(" ", "")
elif name_type == "short":
# this is used to generate test name based on unique index
name = "_".join(
[self.module_name(), "test", str(Caffe2BenchmarkBase.test_index)]
)
Caffe2BenchmarkBase.test_index += 1
return name
def extract_inputs_tuple(self):
# add a dummy function here to match the interface of TorchBenchmarkBase
pass
class Caffe2OperatorTestCase:
"""This class includes all the information needed to benchmark an operator.
op_bench: it's a user-defined class (child of Caffe2BenchmarkBase)
which includes input and operator, .etc
test_config: a namedtuple includes test_name, input_shape, tag, run_backward.
When run_backward is false, the run_forward method will be executed, otherwise
run_backward method will be executed.
"""
def __init__(self, op_bench, test_config):
self.op_bench = op_bench
self.test_config = test_config
self.framework = "Caffe2"
def run_forward(self, num_runs, print_per_iter=False, cuda_sync=False):
"""Run the forward path of an operator in a loop"""
with core.DeviceScope(self.op_bench.dev):
op = self.op_bench.forward()
if not workspace.RunOperatorMultiple(op, num_runs):
raise ValueError(f"Unable to run operator test case: {self.test_name}")
def run_backward(self, num_runs, print_per_iter=False):
"""Run the backward path of an operator in a loop"""
with core.DeviceScope(self.op_bench.dev):
op = self.op_bench.backward()
if not workspace.RunOperatorMultiple(op, num_runs):
raise ValueError(
f"Unable to run operator gradient test case: {self.test_name}"
)
def _print_per_iter(self):
pass
def create_caffe2_op_test_case(op_bench, test_config):
test_case = Caffe2OperatorTestCase(op_bench, test_config)
test_config = test_case.test_config
op = test_case.op_bench
func_name = f"{op.module_name()}{test_case.framework}{str(test_config)}"
return (func_name, test_case)
OpMeta = namedtuple(
"OpMeta",
"op_type num_inputs input_dims input_types \
output_dims num_outputs args device",
)
def generate_c2_test_from_ops(ops_metadata, bench_op, tags):
"""
This function is used to generate Caffe2 tests based on the metadata
of operators. The metadata includes seven fields which are 1) op_type:
the name of the operator. 2) num_inputs: the number of input blobs.
3) input_dims: a dictionary which includes the shapes of the input blobs.
4) input_types: a list which includes the types of input blobs. 5)
output_dims: a dictionary which includes the shapes of output blobs.
6) num_oupts: the number of output blobs. 7) args: a dictionary which
includes the args for th operator.
Here is an example to show the metadata for the WeighedSum operator
op_type : WeightedSum
num_inputs: 4
input_dims: {'0': [256], '1': [1], '2': [256], '3': [1]}
input_types: ['float', 'float', 'float', 'float']
output_dims: {'0': [256]}
num_outputs: 4
args: {}
TODO(mingzhe0908): introduce device and add it to the benchmark name
"""
for op_metadata in ops_metadata:
tmp_attrs = OpMeta(
op_metadata.op_type,
op_metadata.num_inputs,
op_metadata.input_dims,
op_metadata.input_types,
op_metadata.output_dims,
op_metadata.num_outputs,
op_metadata.args,
op_metadata.device,
)
test_attrs = tmp_attrs._asdict()
op = bench_op()
op.init(**test_attrs)
test_name = op.test_name("short")
input_config = "Shapes: {}, Type: {}, Args: {}".format(
op_metadata.input_dims, op_metadata.input_types, str(op_metadata.args)
)
test_config = TestConfig(test_name, input_config, tags, run_backward=False)
if op is not None:
create_caffe2_op_test_case(op, test_config)
def generate_c2_test(configs, c2_bench_op):
"""This function creates Caffe2 op test based on the given operator"""
return _register_test(configs, c2_bench_op, create_caffe2_op_test_case, False)
def generate_c2_gradient_test(configs, c2_bench_op):
"""This function creates Caffe2 op test based on the given operator"""
return _register_test(configs, c2_bench_op, create_caffe2_op_test_case, True)