blob: 3e4e032160caf69a5ae59b4644af000bdf05476b [file] [log] [blame]
import time
import torch
import torch.nn as nn
import torchvision.models as models
from functorch import grad, make_functional, vmap
from opacus import PrivacyEngine
from opacus.utils.module_modification import convert_batchnorm_modules
device = "cuda"
batch_size = 128
torch.manual_seed(0)
model_functorch = convert_batchnorm_modules(models.resnet18(num_classes=10))
model_functorch = model_functorch.to(device)
criterion = nn.CrossEntropyLoss()
images = torch.randn(batch_size, 3, 32, 32, device=device)
targets = torch.randint(0, 10, (batch_size,), device=device)
func_model, weights = make_functional(model_functorch)
def compute_loss(weights, image, target):
images = image.unsqueeze(0)
targets = target.unsqueeze(0)
output = func_model(weights, images)
loss = criterion(output, targets)
return loss
def functorch_per_sample_grad():
compute_grad = grad(compute_loss)
compute_per_sample_grad = vmap(compute_grad, (None, 0, 0))
start = time.time()
result = compute_per_sample_grad(weights, images, targets)
torch.cuda.synchronize()
end = time.time()
return result, end - start # end - start in seconds
torch.manual_seed(0)
model_opacus = convert_batchnorm_modules(models.resnet18(num_classes=10))
model_opacus = model_opacus.to(device)
criterion = nn.CrossEntropyLoss()
for p_f, p_o in zip(model_functorch.parameters(), model_opacus.parameters()):
assert torch.allclose(p_f, p_o) # Sanity check
privacy_engine = PrivacyEngine(
model_opacus,
sample_rate=0.01,
alphas=[10, 100],
noise_multiplier=1,
max_grad_norm=10000.0,
)
def opacus_per_sample_grad():
start = time.time()
output = model_opacus(images)
loss = criterion(output, targets)
loss.backward()
torch.cuda.synchronize()
end = time.time()
expected = [p.grad_sample for p in model_opacus.parameters()]
for p in model_opacus.parameters():
delattr(p, "grad_sample")
p.grad = None
return expected, end - start
for _ in range(5):
_, seconds = functorch_per_sample_grad()
print(seconds)
result, seconds = functorch_per_sample_grad()
print(seconds)
for _ in range(5):
_, seconds = opacus_per_sample_grad()
print(seconds)
expected, seconds = opacus_per_sample_grad()
print(seconds)
result = [r.detach() for r in result]
print(len(result))
# TODO: The following shows that the per-sample-grads computed are different.
# This concerns me a little; we should compare to a source of truth.
# for i, (r, e) in enumerate(list(zip(result, expected))[::-1]):
# if torch.allclose(r, e, rtol=1e-5):
# continue
# print(-(i+1), ((r - e)/(e + 0.000001)).abs().max())