| from enum import Enum |
| from typing import Any, Callable, List, Optional, Set |
| |
| import torch |
| |
| from ._profiler import ( |
| _ProfilerEvent, |
| ActiveProfilerType, |
| ProfilerActivity, |
| ProfilerConfig, |
| ) |
| |
| # Defined in tools/autograd/init.cpp |
| |
| class DeviceType(Enum): |
| CPU = ... |
| CUDA = ... |
| MKLDNN = ... |
| OPENGL = ... |
| OPENCL = ... |
| IDEEP = ... |
| HIP = ... |
| FPGA = ... |
| ORT = ... |
| XLA = ... |
| MPS = ... |
| HPU = ... |
| Meta = ... |
| Vulkan = ... |
| Metal = ... |
| PrivateUse1 = ... |
| |
| class ProfilerEvent: |
| def cpu_elapsed_us(self, other: ProfilerEvent) -> float: ... |
| def cpu_memory_usage(self) -> int: ... |
| def cuda_elapsed_us(self, other: ProfilerEvent) -> float: ... |
| def privateuse1_elapsed_us(self, other: ProfilerEvent) -> float: ... |
| def cuda_memory_usage(self) -> int: ... |
| def device(self) -> int: ... |
| def handle(self) -> int: ... |
| def has_cuda(self) -> bool: ... |
| def is_remote(self) -> bool: ... |
| def kind(self) -> int: ... |
| def name(self) -> str: ... |
| def node_id(self) -> int: ... |
| def sequence_nr(self) -> int: ... |
| def shapes(self) -> List[List[int]]: ... |
| def thread_id(self) -> int: ... |
| def flops(self) -> float: ... |
| def is_async(self) -> bool: ... |
| |
| class _KinetoEvent: |
| def name(self) -> str: ... |
| def device_index(self) -> int: ... |
| def start_us(self) -> int: ... |
| def duration_us(self) -> int: ... |
| def is_async(self) -> bool: ... |
| def linked_correlation_id(self) -> int: ... |
| def shapes(self) -> List[List[int]]: ... |
| def dtypes(self) -> List[str]: ... |
| def concrete_inputs(self) -> List[Any]: ... |
| def device_type(self) -> DeviceType: ... |
| def start_thread_id(self) -> int: ... |
| def end_thread_id(self) -> int: ... |
| def correlation_id(self) -> int: ... |
| def fwd_thread_id(self) -> int: ... |
| def stack(self) -> List[str]: ... |
| def scope(self) -> int: ... |
| def sequence_nr(self) -> int: ... |
| def flops(self) -> int: ... |
| def cuda_elapsed_us(self) -> int: ... |
| def privateuse1_elapsed_us(self) -> int: ... |
| |
| class _ProfilerResult: |
| def events(self) -> List[_KinetoEvent]: ... |
| def legacy_events(self) -> List[List[ProfilerEvent]]: ... |
| def save(self, path: str) -> None: ... |
| def experimental_event_tree(self) -> List[_ProfilerEvent]: ... |
| def trace_start_us(self) -> int: ... |
| |
| class SavedTensor: ... |
| |
| def _enable_profiler( |
| config: ProfilerConfig, |
| activities: Set[ProfilerActivity], |
| ) -> None: ... |
| def _prepare_profiler( |
| config: ProfilerConfig, |
| activities: Set[ProfilerActivity], |
| ) -> None: ... |
| def _disable_profiler() -> _ProfilerResult: ... |
| def _profiler_enabled() -> bool: ... |
| def _add_metadata_json(key: str, value: str) -> None: ... |
| def _kineto_step() -> None: ... |
| def _get_sequence_nr() -> int: ... |
| def kineto_available() -> bool: ... |
| def _record_function_with_args_enter(name: str, *args) -> torch.Tensor: ... |
| def _record_function_with_args_exit(handle: torch.Tensor) -> None: ... |
| def _supported_activities() -> Set[ProfilerActivity]: ... |
| def _enable_record_function(enable: bool) -> None: ... |
| def _set_empty_test_observer(is_global: bool, sampling_prob: float) -> None: ... |
| def _push_saved_tensors_default_hooks( |
| pack_hook: Callable, |
| unpack_hook: Callable, |
| ) -> None: ... |
| def _pop_saved_tensors_default_hooks() -> None: ... |
| def _unsafe_set_version_counter(t: torch.Tensor, prev_version: int) -> None: ... |
| def _enable_profiler_legacy(config: ProfilerConfig) -> None: ... |
| def _disable_profiler_legacy() -> List[List[ProfilerEvent]]: ... |
| def _profiler_type() -> ActiveProfilerType: ... |
| def _saved_tensors_hooks_enable() -> None: ... |
| def _saved_tensors_hooks_disable(message: str) -> None: ... |
| def _saved_tensors_hooks_get_disabled_error_message() -> Optional[str]: ... |
| |
| class CreationMeta(Enum): |
| DEFAULT = ... |
| IN_CUSTOM_FUNCTION = ... |
| MULTI_OUTPUT_NODE = ... |
| NO_GRAD_MODE = ... |
| INFERENCE_MODE = ... |
| |
| def _set_creation_meta(t: torch.Tensor, creation_meta: CreationMeta) -> None: ... |
| def _get_creation_meta(t: torch.Tensor) -> CreationMeta: ... |