| from __future__ import annotations |
| |
| import contextlib |
| import dis |
| import functools |
| import inspect |
| import logging |
| import os |
| import sys |
| import textwrap |
| import threading |
| import traceback |
| import types |
| import warnings |
| from collections import namedtuple |
| from enum import Enum |
| from os.path import dirname, join |
| from typing import ( |
| Any, |
| Callable, |
| Dict, |
| List, |
| NamedTuple, |
| Optional, |
| Set, |
| Tuple, |
| TYPE_CHECKING, |
| Union, |
| ) |
| from unittest.mock import patch |
| |
| import torch |
| import torch.fx |
| import torch.utils._pytree as pytree |
| import torch.utils.checkpoint |
| from torch import _guards |
| from torch._subclasses import fake_tensor |
| from torch.export import Constraint |
| from torch.fx.experimental.proxy_tensor import make_fx, maybe_disable_fake_tensor_mode |
| from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo |
| from torch.nn.parallel.distributed import DistributedDataParallel |
| from ..fx import GraphModule |
| from .backends.registry import CompilerFn, lookup_backend |
| |
| from .hooks import Hooks |
| |
| if TYPE_CHECKING: |
| from torch._C._dynamo.eval_frame import ( # noqa: F401 |
| reset_code, |
| set_eval_frame, |
| set_guard_error_hook, |
| set_guard_fail_hook, |
| skip_code, |
| unsupported, |
| ) |
| else: |
| for name in dir(torch._C._dynamo.eval_frame): |
| if name.startswith("__"): |
| continue |
| globals()[name] = getattr(torch._C._dynamo.eval_frame, name) |
| |
| from . import config, convert_frame, external_utils, skipfiles, utils |
| from .exc import CondOpArgsMismatchError, ResetRequired, UserError, UserErrorType |
| from .mutation_guard import install_generation_tagging_init |
| from .types import DynamoCallback |
| from .utils import compile_times |
| |
| log = logging.getLogger(__name__) |
| |
| from torch._dispatch.python import enable_python_dispatcher |
| from torch.utils._python_dispatch import _disable_current_modes |
| |
| always_optimize_code_objects = utils.ExactWeakKeyDictionary() |
| null_context = contextlib.nullcontext |
| |
| |
| import sympy |
| |
| from torch.fx.experimental.symbolic_shapes import ConstraintViolationError |
| |
| |
| # See https://github.com/python/typing/pull/240 |
| class Unset(Enum): |
| token = 0 |
| |
| |
| unset = Unset.token |
| |
| compile_lock = threading.RLock() |
| most_recent_backend: Optional[CompilerFn] = None |
| DONT_WRAP_FILES = { |
| # For tracing into fx modules |
| inspect.getsourcefile(GraphModule), |
| join(dirname(dirname(__file__)), "onnx/_internal/fx/dynamo_graph_extractor.py"), |
| } |
| |
| |
| CacheEntry = namedtuple("CacheEntry", "check_fn, code") |
| |
| |
| def _debug_get_cache_entry_list(code: types.CodeType) -> List[CacheEntry]: |
| """ |
| Given a code object, retrieve the cache entries stored in this code. |
| """ |
| cache_list = torch._C._dynamo.eval_frame._debug_get_cache_entry_list(code) |
| return list(map(CacheEntry._make, cache_list)) |
| |
| |
| class OptimizedModule(torch.nn.Module): |
| """ |
| Wraps the original nn.Module object and later patches its |
| forward method to optimized self.forward method. |
| """ |
| |
| def __init__(self, mod: torch.nn.Module, dynamo_ctx): |
| super().__init__() |
| # Installs the params/buffer |
| self._orig_mod = mod |
| self.dynamo_ctx = dynamo_ctx |
| self._initialize() |
| |
| def _initialize(self): |
| # Do this stuff in constructor to lower overhead slightly |
| if isinstance(self._orig_mod.forward, types.MethodType) and skipfiles.check( |
| inspect.getsourcefile(self._orig_mod.forward) |
| ): |
| # This may be a torch.nn.* instance in skipfiles.py which |
| # won't trigger a frame evaluation workaround to add an extra |
| # frame we can capture |
| self.forward = self.dynamo_ctx(external_utils.wrap_inline(self._orig_mod)) |
| else: |
| # Invoke hooks outside of dynamo then pickup the inner frame |
| self.forward = self.dynamo_ctx(self._orig_mod.__call__) |
| |
| if hasattr(self._orig_mod, "_initialize_hook"): |
| self._forward = self.forward |
| self.forward = self._call_lazy_check |
| |
| def __getstate__(self): |
| state = dict(self.__dict__) |
| state.pop("forward", None) |
| state.pop("__call__", None) |
| return state |
| |
| def __setstate__(self, state): |
| self.__dict__ = state |
| self._initialize() |
| |
| def __getattr__(self, name): |
| if name == "_orig_mod": |
| return self._modules["_orig_mod"] |
| return getattr(self._orig_mod, name) |
| |
| def _call_lazy_check(self, *args, **kwargs): |
| if hasattr(self._orig_mod, "_initialize_hook"): |
| # In the case of a lazy module, we want to run |
| # the pre-hooks which initialize it. |
| # Afterwards, lazy module deletes its pre-hooks |
| # to avoid treating it as lazy on subsequent recompile. |
| assert len(kwargs) == 0 |
| self._orig_mod._infer_parameters(self._orig_mod, args) |
| return self._forward(*args, **kwargs) |
| |
| def __dir__(self): |
| orig_mod_attrs = self._orig_mod.__dir__() |
| return orig_mod_attrs + [ |
| attr for attr in super().__dir__() if attr not in orig_mod_attrs |
| ] |
| |
| |
| def remove_from_cache(f): |
| """ |
| Make sure f.__code__ is not cached to force a recompile |
| """ |
| if isinstance(f, types.CodeType): |
| reset_code(f) |
| elif hasattr(f, "__code__"): |
| reset_code(f.__code__) |
| elif hasattr(getattr(f, "forward", None), "__code__"): |
| reset_code(f.forward.__code__) |
| else: |
| from . import reset # type: ignore[attr-defined] |
| |
| reset() |
| log.warning("could not determine __code__ for %s", f) |
| |
| |
| def nothing(): |
| pass |
| |
| |
| def innermost_fn(fn): |
| """ |
| In case of nesting of _TorchDynamoContext calls, find the innermost |
| function. TorchDynamo caches on fn.__code__ object, so its necessary to find |
| the innermost function to pass on the optimize, run, disable etc. |
| """ |
| unaltered_fn = fn |
| while hasattr(unaltered_fn, "_torchdynamo_orig_callable"): |
| unaltered_fn = unaltered_fn._torchdynamo_orig_callable |
| assert callable(unaltered_fn) |
| return unaltered_fn |
| |
| |
| @contextlib.contextmanager |
| def enable_dynamic(enable: Optional[bool] = None, export: bool = False): |
| if enable is None: |
| yield |
| elif enable: |
| # Assume everything is dynamic by deafult |
| with config.patch(assume_static_by_default=False): |
| yield |
| else: |
| with config.patch( |
| automatic_dynamic_shapes=False, assume_static_by_default=True |
| ): |
| yield |
| |
| |
| class _TorchDynamoContext: |
| def __init__( |
| self, |
| callback: DynamoCallback, |
| on_enter=nothing, |
| backend_ctx_ctor=null_context, |
| patch_fn=nothing, |
| first_ctx=False, |
| *, |
| export=False, |
| dynamic=None, |
| compiler_config=None, |
| ): |
| super().__init__() |
| assert callable(callback) or callback is False or callback is None |
| self.callback: DynamoCallback = callback |
| self.prior: Union[Unset, DynamoCallback] = unset |
| self.on_enter = on_enter |
| self.extra_ctx_ctor = backend_ctx_ctor |
| self.first_ctx = first_ctx |
| self.export = export |
| self.dynamic = dynamic |
| self.compiler_config = compiler_config |
| patch_fn() |
| |
| def __enter__(self): |
| if config.raise_on_ctx_manager_usage: |
| raise RuntimeError( |
| "torch._dynamo.optimize(...) is used with a context manager. " |
| "Please refer to https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html " |
| "to use torch._dynamo.optimize(...) as an annotation/decorator. " |
| ) |
| self.on_enter() |
| self.prior = set_eval_frame(self.callback) |
| self.backend_ctx = self.extra_ctx_ctor() |
| self.backend_ctx.__enter__() |
| self.dynamic_ctx = enable_dynamic(self.dynamic, self.export) |
| self.dynamic_ctx.__enter__() |
| |
| def __exit__(self, exc_type, exc_val, exc_tb): |
| assert self.prior is not unset |
| set_eval_frame(self.prior) |
| self.prior = unset |
| # TODO: This is totally not the right way to chain contexts manually |
| self.dynamic_ctx.__exit__(exc_type, exc_val, exc_tb) |
| self.backend_ctx.__exit__(exc_type, exc_val, exc_tb) |
| |
| def __call__(self, fn): |
| # public api for compiler config/options |
| def get_compiler_config(): |
| return self.compiler_config |
| |
| fn = innermost_fn(fn) |
| # Optimize the forward method of torch.nn.Module object |
| if isinstance(fn, torch.nn.Module): |
| mod = fn |
| new_mod = OptimizedModule(mod, self) |
| # Save the function pointer to find the original callable while nesting |
| # of decorators. |
| new_mod._torchdynamo_orig_callable = mod.forward |
| |
| # when compiling torch.nn.Module, |
| # provide public api OptimizedModule.get_compiler_config() |
| assert not hasattr(new_mod, "get_compiler_config") |
| new_mod.get_compiler_config = get_compiler_config # type: ignore[attr-defined] |
| |
| return new_mod |
| assert callable(fn) |
| |
| try: |
| filename = inspect.getsourcefile(fn) |
| except TypeError: |
| filename = None |
| if ( |
| (filename is None or skipfiles.check(filename)) |
| and ( |
| getattr(fn, "__name__", "") not in ["_call_impl", "_wrapped_call_impl"] |
| ) |
| and filename not in DONT_WRAP_FILES |
| ): |
| # call to a builtin without a frame for us to capture |
| fn = external_utils.wrap_inline(fn) |
| |
| callback = self.callback |
| on_enter = self.on_enter |
| backend_ctx_ctor = self.extra_ctx_ctor |
| |
| @functools.wraps(fn) |
| def _fn(*args, **kwargs): |
| if ( |
| not isinstance(self, DisableContext) |
| and torch.fx._symbolic_trace.is_fx_tracing() |
| ): |
| if config.error_on_nested_fx_trace: |
| raise RuntimeError( |
| "Detected that you are using FX to symbolically trace " |
| "a dynamo-optimized function. This is not supported at the moment." |
| ) |
| else: |
| return fn(*args, **kwargs) |
| |
| on_enter() |
| prior = set_eval_frame(callback) |
| backend_ctx = backend_ctx_ctor() |
| backend_ctx.__enter__() |
| dynamic_ctx = enable_dynamic(self.dynamic, self.export) |
| dynamic_ctx.__enter__() |
| try: |
| return fn(*args, **kwargs) |
| finally: |
| set_eval_frame(prior) |
| dynamic_ctx.__exit__(None, None, None) |
| backend_ctx.__exit__(None, None, None) |
| |
| # hooks to properly handle inlining |
| if isinstance(self, DisableContext): |
| _fn._torchdynamo_disable = True # type: ignore[attr-defined] |
| else: |
| _fn._torchdynamo_inline = fn # type: ignore[attr-defined] |
| |
| # Save the function pointer to find the original callable while nesting |
| # of decorators. |
| _fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined] |
| |
| # when compiling user function instead of nn.Module |
| # provide public api _fn.get_compiler_config() |
| assert not hasattr(_fn, "get_compiler_config") |
| _fn.get_compiler_config = get_compiler_config # type: ignore[attr-defined] |
| |
| # If the function is called using torch._dynamo.optimize decorator, we |
| # should prevent any type of skipping. |
| if callback not in (None, False): |
| if not hasattr(fn, "__code__"): |
| raise RuntimeError( |
| textwrap.dedent( |
| """ |
| |
| torch._dynamo.optimize is called on a non function object. |
| If this is a callable class, please wrap the relevant code into a function and optimize the |
| wrapper function. |
| |
| >> class CallableClass: |
| >> def __init__(self): |
| >> super().__init__() |
| >> self.relu = torch.nn.ReLU() |
| >> |
| >> def __call__(self, x): |
| >> return self.relu(torch.sin(x)) |
| >> |
| >> def print_hello(self): |
| >> print("Hello world") |
| >> |
| >> mod = CallableClass() |
| |
| If you want to optimize the __call__ function and other code, wrap that up in a function |
| |
| >> def wrapper_fn(x): |
| >> y = mod(x) |
| >> return y.sum() |
| |
| and then optimize the wrapper_fn |
| |
| >> opt_wrapper_fn = torch._dynamo.optimize(wrapper_fn) |
| """ |
| ) |
| ) |
| always_optimize_code_objects[fn.__code__] = True |
| |
| return _fn |
| |
| |
| class OptimizeContext(_TorchDynamoContext): |
| @staticmethod |
| def _different_backend(old, new): |
| return not (old == new or old is None) |
| |
| def __init__( |
| self, |
| callback, |
| backend_ctx_ctor, |
| first_ctx=False, |
| *, |
| export=False, |
| dynamic=None, |
| compiler_config=None, |
| ): |
| def on_enter(): |
| global most_recent_backend |
| if OptimizeContext._different_backend(most_recent_backend, compiler_fn): |
| if config.raise_on_backend_change: |
| raise ResetRequired() |
| else: |
| warnings.warn( |
| "changing options to `torch.compile()` may require " |
| "calling `torch._dynamo.reset()` to take effect" |
| ) |
| most_recent_backend = compiler_fn |
| install_generation_tagging_init() |
| |
| compiler_fn = innermost_fn(callback) |
| super().__init__( |
| callback=callback, |
| on_enter=on_enter, |
| backend_ctx_ctor=backend_ctx_ctor, |
| patch_fn=TorchPatcher.patch, |
| first_ctx=first_ctx, |
| export=export, |
| dynamic=dynamic, |
| compiler_config=compiler_config, |
| ) |
| |
| |
| class RunOnlyContext(_TorchDynamoContext): |
| def __init__(self): |
| # cudagraph trees relies on generation increment |
| def on_enter(): |
| torch._dynamo.mutation_guard.GenerationTracker.generation += 1 |
| |
| super().__init__(callback=False, on_enter=on_enter) |
| |
| |
| class DisableContext(_TorchDynamoContext): |
| def __init__(self): |
| super().__init__(callback=None) |
| |
| |
| def first_real_inst_idx(code): |
| if sys.version_info < (3, 11): |
| return 0 |
| for inst in dis.get_instructions(code): |
| if inst.opname == "RESUME": |
| return inst.offset // 2 |
| raise RuntimeError("RESUME instruction not found in code") |
| |
| |
| def catch_errors_wrapper(callback, hooks: Hooks): |
| @functools.wraps(callback) |
| def catch_errors(frame, cache_entry, frame_state): |
| assert frame_state is not None |
| |
| if ( |
| # TODO: the first condition is not covered by any test |
| frame.f_lasti >= first_real_inst_idx(frame.f_code) |
| or skipfiles.check(frame.f_code.co_filename) |
| or config.disable |
| ): |
| log.debug("skipping %s %s", frame.f_code.co_name, frame.f_code.co_filename) |
| return None |
| if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__": |
| # nametuple constructor |
| return None |
| if config.optimize_ddp: |
| ddp_module = DistributedDataParallel._get_active_ddp_module() |
| if ddp_module: |
| with compile_lock: |
| from torch._dynamo.backends.distributed import DDPOptimizer |
| |
| ddp_optimizer = DDPOptimizer( |
| bucket_bytes_cap=ddp_module.bucket_bytes_cap, |
| backend_compile_fn=callback._torchdynamo_orig_callable, |
| ) |
| assert hasattr( |
| callback, "_clone_with_backend" |
| ), "DDPOptimizer only supports callback fns that know how to clone themselves." |
| hijacked_callback = callback._clone_with_backend( |
| ddp_optimizer.compile_fn, |
| ) |
| return hijacked_callback(frame, cache_entry, hooks, frame_state) |
| |
| with compile_lock, _disable_current_modes(): |
| return callback(frame, cache_entry, hooks, frame_state) |
| |
| catch_errors._torchdynamo_orig_callable = callback # type: ignore[attr-defined] |
| return catch_errors |
| |
| |
| def _optimize_catch_errors( |
| compile_fn, |
| hooks: Hooks, |
| backend_ctx_ctor=null_context, |
| export=False, |
| dynamic=None, |
| compiler_config=None, |
| ): |
| return OptimizeContext( |
| catch_errors_wrapper(compile_fn, hooks), |
| backend_ctx_ctor=backend_ctx_ctor, |
| first_ctx=True, |
| export=export, |
| dynamic=dynamic, |
| compiler_config=compiler_config, |
| ) |
| |
| |
| def get_compiler_fn(compiler_fn): |
| from .repro.after_dynamo import wrap_backend_debug |
| |
| if hasattr(compiler_fn, "compiler_name"): |
| compiler_str = compiler_fn.compiler_name |
| elif isinstance(compiler_fn, str): |
| compiler_str = compiler_fn |
| else: |
| compiler_str = None |
| compiler_fn = lookup_backend(compiler_fn) |
| return wrap_backend_debug(compiler_fn, compiler_str) |
| |
| |
| class _NullDecorator(contextlib.nullcontext): # type: ignore[type-arg] |
| def __call__(self, fn): |
| assert callable(fn) |
| return fn |
| |
| |
| def check_if_dynamo_supported(): |
| if sys.platform == "win32": |
| raise RuntimeError("Windows not yet supported for torch.compile") |
| if sys.version_info >= (3, 12): |
| raise RuntimeError("Python 3.12+ not yet supported for torch.compile") |
| |
| |
| def is_dynamo_supported(): |
| try: |
| check_if_dynamo_supported() |
| return True |
| except Exception: |
| return False |
| |
| |
| def optimize( |
| backend="inductor", |
| *, |
| nopython=False, |
| guard_export_fn=None, |
| guard_fail_fn=None, |
| disable=False, |
| dynamic=None, |
| ): |
| """ |
| The main entrypoint of TorchDynamo. Do graph capture and call |
| backend() to optimize extracted graphs. |
| |
| Args: |
| backend: One of the two things: |
| - Either, a function/callable taking a torch.fx.GraphModule and |
| example_inputs and returning a python callable that runs the |
| graph faster. |
| One can also provide additional context for the backend, like |
| torch.jit.fuser("fuser2"), by setting the backend_ctx_ctor attribute. |
| See AOTAutogradMemoryEfficientFusionWithContext for the usage. |
| - Or, a string backend name in `torch._dynamo.list_backends()` |
| nopython: If True, graph breaks will be errors and there will |
| be a single whole-program graph. |
| disable: If True, turn this decorator into a no-op |
| dynamic: If True, upfront compile as dynamic a kernel as possible. If False, |
| disable all dynamic shapes support (always specialize). If None, automatically |
| detect when sizes vary and generate dynamic kernels upon recompile. |
| |
| Example Usage:: |
| |
| @torch._dynamo.optimize() |
| def toy_example(a, b): |
| ... |
| """ |
| check_if_dynamo_supported() |
| # Note: The hooks object could be global instead of passed around, *however* that would make |
| # for a confusing API usage and plumbing story wherein we nest multiple .optimize calls. |
| # There is some prior art around this, w/r/t nesting backend calls are enforced to be the same |
| # compiler, however, this feels onerous for callback and hooks, and it feels better to give our users an |
| # easier to understand UX at the cost of a little more plumbing on our end. |
| hooks = Hooks(guard_export_fn=guard_export_fn, guard_fail_fn=guard_fail_fn) |
| torch._C._log_api_usage_once("torch._dynamo.optimize") |
| if disable or os.environ.get("TORCHDYNAMO_DISABLE", "") == "1": |
| return _NullDecorator() |
| |
| backend = get_compiler_fn(backend) |
| |
| # Find if backend has any extra context manager |
| backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context) |
| |
| if nopython: |
| return optimize_assert( |
| backend, |
| dynamic=dynamic, |
| hooks=hooks, |
| ) |
| return _optimize_catch_errors( |
| convert_frame.convert_frame(backend, hooks=hooks), |
| hooks, |
| backend_ctx_ctor, |
| dynamic=dynamic, |
| compiler_config=backend.get_compiler_config() |
| if hasattr(backend, "get_compiler_config") |
| else None, |
| ) |
| |
| |
| # TODO(voz): Consider making "explain" output alongside a run / part of a run |
| @patch("torch._dynamo.symbolic_convert.explain", True) |
| def explain(f, *extra_args, **extra_kwargs): |
| def inner(*args, **kwargs): |
| # TODO(voz): Do we want a decorator for this? |
| from . import reset # type: ignore[attr-defined] |
| |
| reset() |
| |
| graphs: List[torch.fx.GraphModule] = [] |
| break_reasons: List[Any] = [] |
| op_count: int = 0 |
| ops_per_graph: List[torch.fx.Node] = [] |
| out_guards: List[_guards.Guard] = [] |
| |
| def dynamo_graph_accumulating_compiler( |
| gm: torch.fx.GraphModule, example_inputs |
| ): |
| from .backends.debugging import _explain_graph_detail |
| |
| nonlocal graphs |
| nonlocal op_count |
| nonlocal ops_per_graph |
| nonlocal break_reasons |
| |
| gm, graphs, op_count, ops_per_graph, break_reasons = _explain_graph_detail( |
| gm, graphs, op_count, ops_per_graph, break_reasons |
| ) |
| |
| return gm.forward |
| |
| def guard_export_print(guards): |
| nonlocal out_guards |
| out_guards.extend(guards) |
| |
| with patch(f"{__name__}.most_recent_backend", None): |
| opt_f = optimize( |
| dynamo_graph_accumulating_compiler, |
| nopython=False, |
| guard_export_fn=guard_export_print, |
| )(f) |
| # TODO(voz): We may have instances of `f` that mutate inputs, we should track sideffects and reject. |
| opt_f(*args, **kwargs) |
| |
| graph_count = len(graphs) |
| |
| # For the explanation summary, dedupe reasons by the innermost stack frame and dedupe by it. |
| deduped_reasons = {} |
| for reason in break_reasons: |
| innermost_frame = reason.user_stack[-1] |
| # __repr__ uniquely identifies a FrameSummary so we can use it for deduping |
| deduped_reasons[repr(innermost_frame)] = reason |
| |
| formatted_list = "" |
| for idx, break_reason in enumerate(deduped_reasons.values()): |
| formatted_stack = "".join(traceback.format_list(break_reason.user_stack)) |
| msg = f"{idx + 1}. Reason: {break_reason.reason}\n User Stack: {formatted_stack}\n" |
| formatted_list += msg |
| |
| graph_break_count = graph_count - 1 |
| compile_time = compile_times(repr="str") |
| |
| # TODO(voz): Do we want a decorator for this? |
| reset() |
| from .backends.debugging import ExplainOutput |
| |
| return ExplainOutput( |
| graphs, |
| graph_count, |
| graph_break_count, |
| break_reasons, |
| op_count, |
| ops_per_graph, |
| out_guards, |
| compile_time, |
| ) |
| |
| if extra_args or extra_kwargs: |
| warnings.warn( |
| "explain(f, *args, **kwargs) is deprecated, use explain(f)(*args, **kwargs) instead. " |
| "If you don't migrate, we may break your explain call in the future if your user defined kwargs " |
| "conflict with future kwargs added to explain(f)." |
| ) |
| return inner(*extra_args, **extra_kwargs) |
| else: |
| return inner |
| |
| |
| class FlattenInputOutputSignature(torch.fx.interpreter.Transformer): |
| def __init__( |
| self, |
| m: torch.fx.GraphModule, |
| flat_args: Tuple[Any], |
| matched_input_elements_positions: List[int], |
| matched_output_elements_positions: List[int], |
| example_fake_inputs: List[torch.Tensor], |
| fake_mode: Optional[fake_tensor.FakeTensorMode] = None, |
| ): |
| super().__init__(m) |
| |
| matched_input_elements_to_fake = { |
| val: example_fake_inputs[ix] |
| for ix, val in enumerate(matched_input_elements_positions) |
| } |
| |
| self.new_args = [] |
| for i in range(0, len(flat_args)): |
| arg = super().placeholder(f"arg{i}", (), {}) |
| if i in matched_input_elements_to_fake: |
| arg.node.meta["val"] = matched_input_elements_to_fake[i] |
| else: |
| # Fill node.mata["val"] with faketensor from the input, |
| # if it's not found in matched_input_elements_positions |
| if fake_mode is not None and isinstance(flat_args[i], torch.Tensor): |
| arg.node.meta["val"] = fake_mode.from_tensor(flat_args[i]) |
| self.new_args.append(arg) |
| self.old_args_gen = (self.new_args[i] for i in matched_input_elements_positions) |
| self.matched_output_elements_positions = matched_output_elements_positions |
| |
| def placeholder(self, target, args, kwargs): |
| arg = next(self.old_args_gen) |
| if "val" in self.current_node.meta: |
| arg.node.meta["val"] = self.current_node.meta["val"] |
| if "tensor_dict" in self.current_node.meta: |
| arg.node.meta["tensor_dict"] = self.current_node.meta["tensor_dict"] |
| return arg |
| |
| def output(self, target, args, kwargs): |
| dynamo_result_flat = args[0] |
| lookup = [*dynamo_result_flat, *self.new_args] |
| new_result_flat = [lookup[i] for i in self.matched_output_elements_positions] |
| return super().output(target, (new_result_flat,), {}) |
| |
| def run_node(self, n): |
| self.current_node = n |
| r = super().run_node(n) |
| if "val" in self.current_node.meta: |
| r.node.meta["val"] = self.current_node.meta["val"] |
| return r |
| |
| |
| class ExportResult(NamedTuple): |
| graph_module: torch.fx.GraphModule |
| guards: Set[_guards.Guard] |
| # NB: Do not add new fields without overriding __iter__; people are |
| # destructuring so it is BC-breaking |
| |
| |
| def check_signature_rewritable(graph): |
| input_errors = [] |
| for node in graph.graph.nodes: |
| if node.op == "placeholder": |
| assert hasattr(node, "_dynamo_source") |
| source = node._dynamo_source |
| user_stacks = graph._source_to_user_stacks.get(source) |
| if user_stacks is None: |
| continue |
| assert len(user_stacks) > 0 |
| # In some cases we may not have a useful stack. Look for a |
| # useful stack |
| stack = None |
| for s in user_stacks: |
| if len(s) == 0: |
| continue |
| stack = s |
| break |
| if stack is None: |
| msg = f"{source.name()}, a closed over free variable" |
| else: |
| tb = "".join(traceback.format_list(stack)) |
| extra = "" |
| if len(user_stacks) > 1: |
| extra = f"(elided {len(user_stacks)-1} more accesses)" |
| msg = f"{source.name()}, accessed at:\n{tb}{extra}" |
| # TODO: option to print ALL of the stack traces at once |
| input_errors.append(msg) |
| |
| if input_errors: |
| raise UserError( |
| UserErrorType.INVALID_INPUT, |
| "Cannot export model which references tensors that are neither " |
| "buffers/parameters/constants nor are direct inputs. For each tensor, if you'd " |
| "like this tensor to be an explicit input, add it as a dummy argument " |
| "to the top-level model definition you are exporting; if you would " |
| "like its value to be embedded as an exported constant, wrap its access " |
| "in a function marked with @assume_constant_result.\n\n" |
| + "\n\n".join(input_errors), |
| ) |
| |
| |
| def rewrite_signature( |
| f_sig, |
| graph, |
| fake_mode, |
| flat_args, |
| in_spec, |
| example_fake_inputs, |
| graph_captured_input, |
| graph_captured_output, |
| dynamo_traced_result, |
| ): |
| orig_args, orig_kwargs = pytree.tree_unflatten(flat_args, in_spec) |
| |
| def produce_matching(sources, candidates): |
| source_types = " or ".join( |
| [ |
| desc + " (" + ", ".join([str(type(arg)) for arg in args]) + ")" |
| for desc, args in sources.items() |
| ] |
| ) |
| source_args = [arg for args in sources.values() for arg in args] |
| matched_elements_positions = [] |
| dict_of_source_args = dict() |
| for i, arg in enumerate(source_args): |
| dict_of_source_args[id(arg)] = i |
| |
| for candidate_desc, candidate_args in candidates.items(): |
| for i, arg in enumerate(candidate_args): |
| # 1-element tensor arg can be unspec int/float |
| if isinstance(arg, torch.Tensor) and torch.numel(arg) == 1: |
| if id(arg) in dict_of_source_args: |
| matched_elements_positions.append(dict_of_source_args[id(arg)]) |
| elif id(arg.item()) in dict_of_source_args: |
| matched_elements_positions.append( |
| dict_of_source_args[id(arg.item())] |
| ) |
| else: |
| raise AssertionError( |
| f"{candidate_desc} #{i} ({type(arg)}) is not among {source_types}" |
| ) |
| else: |
| if id(arg) not in dict_of_source_args: |
| raise AssertionError( |
| f"{candidate_desc} #{i} ({type(arg)}) is not among {source_types}" |
| ) |
| matched_elements_positions.append(dict_of_source_args[id(arg)]) |
| |
| return matched_elements_positions |
| |
| matched_input_elements_positions = produce_matching( |
| sources={"original args": flat_args}, |
| candidates={"graph-captured input": graph_captured_input}, |
| ) |
| |
| flat_results_traced, out_spec_traced = pytree.tree_flatten(dynamo_traced_result) |
| |
| assert graph_captured_output is not None |
| matched_output_elements_positions = produce_matching( |
| sources={ |
| "graph-captured outputs": list(graph_captured_output), |
| "original args": flat_args, |
| }, |
| candidates={"traced result": flat_results_traced}, |
| ) |
| |
| new_graph = FlattenInputOutputSignature( |
| graph, |
| flat_args, |
| matched_input_elements_positions, |
| matched_output_elements_positions, |
| example_fake_inputs, |
| fake_mode, |
| ).transform() |
| |
| # Make dynamo graph to have same input/output spec as user code |
| def argument_names(f_sig, args, kwargs) -> List[str]: |
| def signature_to_fullargspec(sig: inspect.Signature): |
| # Get a list of Parameter objects from the Signature object |
| params = list(sig.parameters.values()) |
| # Separate positional arguments, keyword-only arguments and varargs/varkw |
| args = [ |
| p.name |
| for p in params |
| if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD |
| ] |
| kwonlyargs = [ |
| p.name for p in params if p.kind == inspect.Parameter.KEYWORD_ONLY |
| ] |
| varargs = next( |
| (p.name for p in params if p.kind == inspect.Parameter.VAR_POSITIONAL), |
| None, |
| ) |
| varkw = next( |
| (p.name for p in params if p.kind == inspect.Parameter.VAR_KEYWORD), |
| None, |
| ) |
| # Get default values for positional arguments and keyword-only arguments |
| defaults = tuple( |
| p.default |
| for p in params |
| if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD |
| and p.default is not inspect.Parameter.empty |
| ) |
| kwonlydefaults = { |
| p.name: p.default |
| for p in params |
| if p.kind == inspect.Parameter.KEYWORD_ONLY |
| and p.default is not inspect.Parameter.empty |
| } |
| # Get annotations for parameters and return value |
| annotations = {} |
| if sig.return_annotation: |
| annotations = {"return": sig.return_annotation} |
| for parameter in params: |
| annotations[parameter.name] = parameter.annotation |
| # Return a FullArgSpec object with the extracted attributes |
| return inspect.FullArgSpec( |
| args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations |
| ) |
| |
| fullargspec = signature_to_fullargspec(f_sig) |
| |
| # 1. Map `args` 1-to-1 to positional arguments in original signature. |
| input_strs = fullargspec.args[: len(args)] |
| |
| if len(args) > len(fullargspec.args): |
| # 2. If there are more arguments left in `args`, they map to varargs in original |
| # signature. Assign names as {varargs}_0, {varargs}_1, ... |
| assert fullargspec.varargs is not None, "More arguments than expected" |
| input_strs += [ |
| f"{fullargspec.varargs}_{i}" |
| for i in range(0, len(args) - len(input_strs)) |
| ] |
| elif len(args) < len(fullargspec.args): |
| # 3. If there are fewer arguments in `args` than `fullargspec.args`, |
| # it implies these are arguments either with default values, or provided in |
| # `kwargs`. The former can be safely ignored. Because Dynamo.export does not |
| # export them as part of the function signature. The latter will be handled |
| # in the next step. |
| for unprovided_arg in fullargspec.args[ |
| len(args) : -len(fullargspec.defaults or []) |
| ]: |
| assert unprovided_arg in kwargs, f"Missing argument {unprovided_arg}" |
| |
| # 4. Keyword arguments provided in `kwargs`. |
| input_strs += list(kwargs.keys()) |
| |
| # 5. Keyword-only arguments with default values if not provided are not exported |
| # as part of the function signature. |
| for kwonly_arg in fullargspec.kwonlyargs: |
| kwonlydefaults = fullargspec.kwonlydefaults or {} |
| assert ( |
| kwonly_arg in kwargs or kwonly_arg in kwonlydefaults |
| ), f"Missing keyword only argument {kwonly_arg}" |
| |
| return input_strs |
| |
| new_graph.graph._codegen = _PyTreeCodeGen( |
| _PyTreeInfo( |
| argument_names(f_sig, orig_args, orig_kwargs), |
| in_spec, |
| out_spec_traced, |
| ) |
| ) |
| new_graph.recompile() |
| return new_graph |
| |
| |
| def export( |
| f: Callable[..., Any], |
| *extra_args, |
| aten_graph: bool = False, |
| pre_dispatch: bool = False, |
| decomposition_table: Optional[ |
| Dict[torch._ops.OpOverload, Callable[..., Any]] |
| ] = None, |
| tracing_mode: str = "symbolic", |
| constraints: Optional[List[Constraint]] = None, |
| assume_static_by_default: bool = False, |
| same_signature: bool = True, |
| **extra_kwargs, |
| ) -> Callable[..., ExportResult]: |
| """ |
| Export an input function f to a format that can be executed outside of PyTorch using the FX graph. |
| |
| Args: |
| f (callable): A PyTorch function to be exported. |
| |
| aten_graph (bool): If True, exports a graph with ATen operators. |
| If False, exports a graph with Python operators. Default is False. |
| |
| pre_dispatch (bool): If True, exports a graph with ATen operators, |
| but before any logic in the PyTorch dispatcher has run. |
| This can be useful if you want to apply further transformations on a graph before running it |
| through autograd, autocast, or any other functionalities that are integrated into the dispatcher. |
| This flag is only valid if aten_graph=True is set. |
| Default is False. |
| |
| decomposition_table (dict): A dictionary that maps operators to their decomposition functions. |
| Required if aten_graph or tracing_mode is specified. Default is None. |
| |
| tracing_mode (str): If "symbolic", turn on dynamic shapes support. Default is "symbolic". |
| |
| same_signature (bool): If True, rewrite the returned graph's signature to be the same as f. |
| |
| Returns: |
| A function that given args and kwargs, returns a tuple of (graph, guards) |
| Graph: An FX graph representing the execution of the input PyTorch function with the provided arguments and options. |
| Guards: The guards we accumulated during tracing f above |
| |
| Raises: |
| AssertionError: If decomposition_table is specified without setting aten_graph=True, |
| or if graph breaks during tracing in export. |
| |
| AssertionError: If Dynamo input and output is not consistent with traced input/output. |
| |
| Note - this headerdoc was authored by ChatGPT, with slight modifications by the author. |
| """ |
| # Deal with "local variable referenced before assignment" |
| _f = f |
| _assume_static_by_default = assume_static_by_default |
| |
| def inner(*args, **kwargs): |
| f = _f |
| assume_static_by_default = _assume_static_by_default |
| check_if_dynamo_supported() |
| torch._C._log_api_usage_once("torch._dynamo.export") |
| if decomposition_table is not None: |
| assert ( |
| aten_graph |
| ), "Specifying a decomposition_table table or tracing mode is illegal without setting aten_graph=True" |
| if pre_dispatch: |
| assert aten_graph, "pre_dispatch=True can only be used when aten_graph=True" |
| f = innermost_fn(f) |
| call_to_inspect = f.forward if isinstance(f, torch.nn.Module) else f |
| original_signature = inspect.signature(call_to_inspect) |
| graph = None |
| out_guards = None |
| graph_captured_input = None |
| graph_captured_result: Optional[Tuple[torch.Tensor, ...]] = None |
| fake_mode = None |
| |
| def guard_export_print(guards: Set[_guards.Guard]): |
| nonlocal out_guards |
| assert ( |
| out_guards is None |
| ), "whole graph export entails exactly one guard export" |
| out_guards = guards |
| |
| example_inputs = [] |
| |
| def dynamo_normalization_capturing_compiler( |
| gm: torch.fx.GraphModule, inner_example_inputs |
| ): |
| nonlocal graph |
| assert ( |
| graph is None |
| ), "Tried to emit a second graph during export. Tracing through 'f' must produce a single graph." |
| graph = gm |
| |
| nonlocal fake_mode, example_inputs |
| # NB: do NOT pass inner_example_inputs here, we are detecting the |
| # Dynamo allocated fake mode, which should be DISTINCT from a |
| # potential outer ambient fake mode which the user provided. |
| # example_inputs is always the user specified inputs, so they |
| # would have the wrong fake mode attached to them |
| fake_mode = _guards.detect_fake_mode() |
| example_inputs = inner_example_inputs |
| |
| def result_capturing_wrapper(*graph_inputs): |
| nonlocal graph_captured_result |
| nonlocal graph_captured_input |
| |
| graph_captured_input = graph_inputs |
| assert graph is not None |
| |
| named_parameters = dict(graph.named_parameters(remove_duplicate=False)) |
| named_buffers = dict(graph.named_buffers(remove_duplicate=False)) |
| |
| ambient_fake_mode = ( |
| _guards.detect_fake_mode(graph_inputs) |
| if _guards.detect_fake_mode(graph_inputs) is not None |
| else fake_mode |
| ) |
| |
| with ambient_fake_mode, enable_python_dispatcher(): |
| params_and_buffers = { |
| **dict(named_parameters), |
| **dict(named_buffers), |
| } |
| fake_params_buffers = dict() |
| |
| for name, value in params_and_buffers.items(): |
| fake_params_buffers[name] = ambient_fake_mode.from_tensor( |
| value, static_shapes=True |
| ) |
| |
| fake_graph_inputs = pytree.tree_map( |
| ambient_fake_mode.from_tensor, graph_inputs |
| ) |
| graph_captured_result = torch.func.functional_call( |
| graph, fake_params_buffers, fake_graph_inputs |
| ) |
| |
| return graph_captured_result |
| |
| return result_capturing_wrapper |
| |
| # Note: This is needed by rewrite_signature. We need to put it before |
| # optimize_assert since user program may mutate the inputs. |
| flat_args, in_spec = pytree.tree_flatten((args, kwargs)) |
| |
| remove_from_cache(f) |
| constraint_violation_error = None |
| if tracing_mode != "symbolic": |
| assume_static_by_default = True |
| with patch(f"{__name__}.most_recent_backend", None), config.patch( |
| specialize_int=True, |
| assume_static_by_default=assume_static_by_default, |
| automatic_dynamic_shapes=False, |
| capture_dynamic_output_shape_ops=True, |
| capture_scalar_outputs=True, |
| ): |
| opt_f = optimize_assert( |
| dynamo_normalization_capturing_compiler, |
| hooks=Hooks( |
| guard_export_fn=guard_export_print, |
| guard_fail_fn=None, |
| ), |
| export=True, |
| export_constraints=constraints, |
| )(f) |
| # TODO(voz): We may have instances of `f` that mutate inputs, we should track sideffects and reject. |
| try: |
| result_traced = opt_f(*args, **kwargs) |
| except ConstraintViolationError as e: |
| constraint_violation_error = e |
| remove_from_cache(f) |
| |
| if ( |
| (shape_env := getattr(fake_mode, "shape_env", None)) is not None |
| and (dim_constraints := shape_env.dim_constraints) is not None |
| and not skipfiles.check(inspect.getsourcefile(call_to_inspect)) |
| ): |
| dim_constraints.solve() |
| dim_constraints.remove_redundant_dynamic_results() |
| msg = dim_constraints.prettify_results(original_signature) |
| forced_specializations = dim_constraints.forced_specializations() |
| if forced_specializations: |
| msg = ( |
| "Some dynamic dimensions need to be specialized because " |
| "the constraints inferred for them are too complex to specify.\n" |
| f"{forced_specializations}\n{msg}" |
| ) |
| if constraint_violation_error: |
| constraint_violation_error.args = ( |
| constraint_violation_error.args[0] + msg, |
| ) |
| else: |
| if forced_specializations: |
| constraint_violation_error = ConstraintViolationError(msg) |
| else: |
| log.info( |
| "Summary of dimension constraints:%s", |
| msg, |
| ) |
| |
| # Error if we have any constraints on static values |
| for k in shape_env.var_to_range.keys(): |
| if isinstance(k, sympy.Integer): |
| constraint_violation_error = ConstraintViolationError( |
| f"{''.join(traceback.format_list(shape_env.var_to_stack[k]))}\n" |
| "It appears that you're trying to set a constraint on a " |
| f"value which we evaluated to have a static value of {k}. " |
| "Scroll up to see where this constraint was set." |
| ) |
| if constraint_violation_error: |
| raise constraint_violation_error |
| |
| assert ( |
| graph is not None |
| ), "Failed to produce a graph during tracing. Tracing through 'f' must produce a single graph." |
| assert hasattr(graph, "_source_to_user_stacks") |
| assert out_guards is not None, "Failed to produce guards during tracing" |
| assert fake_mode is not None |
| |
| # This check need to happend before aten_graph |
| # because placeholder's _source_node attribute is not preserved by make_fx |
| if same_signature: |
| check_signature_rewritable(graph) |
| |
| # NB: This is mostly hitting the cache; Dynamo already converted these |
| example_fake_inputs = [fake_mode.from_tensor(t) for t in example_inputs] |
| |
| if aten_graph: |
| # Running graph with interpreter is needed for propagating the stack_trace |
| def graph_with_interpreter(*args): |
| with torch.fx.traceback.preserve_node_meta(): |
| return torch.fx.Interpreter(graph).run(*args) |
| |
| with maybe_disable_fake_tensor_mode(), enable_python_dispatcher(), ( |
| fake_mode |
| ): |
| try: |
| graph = make_fx( |
| graph_with_interpreter, |
| decomposition_table=decomposition_table, |
| tracing_mode="real", |
| _allow_non_fake_inputs=True, |
| pre_dispatch=pre_dispatch, |
| _allow_fake_constant=False, |
| )(*example_fake_inputs) |
| except CondOpArgsMismatchError as e: |
| # Wrap the internal error to the user-facing error |
| raise UserError(UserErrorType.DYNAMIC_CONTROL_FLOW, str(e)) |
| |
| if same_signature: |
| graph = rewrite_signature( |
| original_signature, |
| graph, |
| fake_mode, |
| flat_args, |
| in_spec, |
| example_fake_inputs, |
| graph_captured_input, |
| graph_captured_result, |
| result_traced, |
| ) |
| # Store constraints and inputs as metadata for user passes, e.g. turn constraints to runtime check |
| graph.meta["input_shape_constraints"] = ( |
| [constraint.serializable_spec for constraint in constraints] |
| if constraints |
| else [] |
| ) |
| |
| return ExportResult(graph, out_guards) |
| |
| if extra_args or extra_kwargs: |
| warnings.warn( |
| "export(f, *args, **kwargs) is deprecated, use export(f)(*args, **kwargs) instead. " |
| "If you don't migrate, we may break your export call in the future if your user defined kwargs " |
| "conflict with future kwargs added to export(f)." |
| ) |
| return inner(*extra_args, **extra_kwargs) |
| else: |
| return inner |
| |
| |
| def optimize_assert( |
| backend, |
| *, |
| hooks=Hooks(None, None), |
| export=False, |
| export_constraints=None, |
| dynamic=None, |
| ): |
| """ |
| The same as `torch._dynamo.optimize(backend, nopython=True)` |
| """ |
| backend = get_compiler_fn(backend) |
| |
| # Find if backend has any extra context manager |
| backend_ctx_ctor = getattr(backend, "backend_ctx_ctor", null_context) |
| |
| return _optimize_catch_errors( |
| convert_frame.convert_frame_assert( |
| backend, export=export, export_constraints=export_constraints |
| ), |
| hooks, |
| backend_ctx_ctor, |
| export=export, |
| dynamic=dynamic, |
| ) |
| |
| |
| class TorchPatcher: |
| @staticmethod |
| @functools.lru_cache(None) |
| def patch(): |
| # A better way to disable the following would be decorate the source |
| # functions with @torch._disable_dynamo. However, this causes issues |
| # with torch.deploy internally. |
| from .decorators import disable |
| |
| torch.jit.trace = disable(torch.jit.trace) |
| torch.jit.trace_module = disable(torch.jit.trace_module) |
| torch.jit._get_trace_graph = disable(torch.jit._get_trace_graph) |
| torch.fx._symbolic_trace.Tracer.trace = disable( |
| torch.fx._symbolic_trace.Tracer.trace |
| ) |
| torch.distributions.Distribution.set_default_validate_args(False) |
| |
| from ..optim import ( |
| adadelta, |
| adagrad, |
| adam, |
| adamax, |
| adamw, |
| asgd, |
| lbfgs, |
| nadam, |
| radam, |
| rmsprop, |
| rprop, |
| sgd, |
| sparse_adam, |
| ) |
| |
| optimizer_modules = { |
| adadelta, |
| adagrad, |
| adam, |
| adamax, |
| adamw, |
| asgd, |
| lbfgs, |
| nadam, |
| radam, |
| rmsprop, |
| rprop, |
| sgd, |
| sparse_adam, |
| } |
| |
| disabled_multi_tensor_opt_modules = { |
| adamax, |
| nadam, |
| radam, # data-dependent control flow |
| sgd, # for now, until we can speed up compilation (this affects the benchmarks) |
| } |
| |
| for opt_mod in optimizer_modules: |
| opt_name = opt_mod.__name__.split(".")[-1] |
| multi_tensor_fn_name = f"_multi_tensor_{opt_name}" |
| fused_fn_name = f"_fused_{opt_name}" |
| if ( |
| hasattr(opt_mod, multi_tensor_fn_name) |
| and opt_mod in disabled_multi_tensor_opt_modules |
| ): |
| setattr( |
| opt_mod, |
| multi_tensor_fn_name, |
| disable(getattr(opt_mod, multi_tensor_fn_name)), |
| ) |
| |
| if hasattr(opt_mod, fused_fn_name): |
| setattr( |
| opt_mod, fused_fn_name, disable(getattr(opt_mod, fused_fn_name)) |
| ) |
| |
| optimizer_classes = [ |
| opt |
| for opt in torch.optim.__dict__.values() |
| if inspect.isclass(opt) and issubclass(opt, torch.optim.Optimizer) |
| ] |
| |
| # Note: we don't support sparsity, data-dependent control, or tracing through backwards |
| excluded_optimizer_classes = { |
| torch.optim.SparseAdam, |
| torch.optim.RAdam, |
| torch.optim.LBFGS, |
| } |
| for opt in optimizer_classes: |
| if opt in excluded_optimizer_classes: |
| opt.step = disable(opt.step) |
| |
| if hasattr(opt, "_init_group"): |
| opt._init_group = disable(opt._init_group) |
| |
| # disable any currently set hooks |
| # Note: we only want to disable the profiling hook |
| # which is the *last* hook applied, we want to keep the no_grad hook |
| hooked = getattr(opt.step, "hooked", False) |
| if hooked: |
| unwrapped_step = getattr(opt.step, "__wrapped__", None) |
| if unwrapped_step: |
| opt.step = unwrapped_step |
| |
| # disable future hooking |
| opt.step.hooked = True |
| |
| torch._dynamo.variables.lists._register_dynamo_list_to_tree_spec() |
| torch._dynamo.variables.lists._register_dynamo_tuple_to_tree_spec() |
| torch._dynamo.variables.dicts._register_dynamo_dict_to_tree_spec() |
| |
| @staticmethod |
| def suppress_torch_distributed_warnings(fn): |
| def inner_fn(*args, **kwargs): |
| warnings.filterwarnings( |
| "ignore", category=UserWarning, module="torch.distributed" |
| ) |
| return fn(*args, **kwargs) |
| |
| return inner_fn |