| import contextlib |
| import torch |
| from torch._C._functorch import ( |
| set_single_level_autograd_function_allowed, |
| get_single_level_autograd_function_allowed, |
| unwrap_if_dead, |
| ) |
| from typing import Union, Tuple |
| |
| @contextlib.contextmanager |
| def enable_single_level_autograd_function(): |
| try: |
| prev_state = get_single_level_autograd_function_allowed() |
| set_single_level_autograd_function_allowed(True) |
| yield |
| finally: |
| set_single_level_autograd_function_allowed(prev_state) |
| |
| def unwrap_dead_wrappers(args): |
| # NB: doesn't use tree_map_only for performance reasons |
| result = tuple( |
| unwrap_if_dead(arg) if isinstance(arg, torch.Tensor) else arg |
| for arg in args |
| ) |
| return result |
| |
| # Allows one to expose an API in a private submodule publicly as per the definition |
| # in PyTorch's public api policy. |
| # |
| # It is a temporary solution while we figure out if it should be the long-term solution |
| # or if we should amend PyTorch's public api policy. The concern is that this approach |
| # may not be very robust because it's not clear what __module__ is used for. |
| # However, both numpy and jax overwrite the __module__ attribute of their APIs |
| # without problem, so it seems fine. |
| def exposed_in(module): |
| def wrapper(fn): |
| fn.__module__ = module |
| return fn |
| return wrapper |
| |
| argnums_t = Union[int, Tuple[int, ...]] |