| from numbers import Number |
| |
| import torch |
| from torch import nan |
| from torch.distributions import constraints |
| from torch.distributions.exp_family import ExponentialFamily |
| from torch.distributions.utils import ( |
| broadcast_all, |
| lazy_property, |
| logits_to_probs, |
| probs_to_logits, |
| ) |
| from torch.nn.functional import binary_cross_entropy_with_logits |
| |
| __all__ = ["Bernoulli"] |
| |
| |
| class Bernoulli(ExponentialFamily): |
| r""" |
| Creates a Bernoulli distribution parameterized by :attr:`probs` |
| or :attr:`logits` (but not both). |
| |
| Samples are binary (0 or 1). They take the value `1` with probability `p` |
| and `0` with probability `1 - p`. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
| >>> m = Bernoulli(torch.tensor([0.3])) |
| >>> m.sample() # 30% chance 1; 70% chance 0 |
| tensor([ 0.]) |
| |
| Args: |
| probs (Number, Tensor): the probability of sampling `1` |
| logits (Number, Tensor): the log-odds of sampling `1` |
| """ |
| arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} |
| support = constraints.boolean |
| has_enumerate_support = True |
| _mean_carrier_measure = 0 |
| |
| def __init__(self, probs=None, logits=None, validate_args=None): |
| if (probs is None) == (logits is None): |
| raise ValueError( |
| "Either `probs` or `logits` must be specified, but not both." |
| ) |
| if probs is not None: |
| is_scalar = isinstance(probs, Number) |
| (self.probs,) = broadcast_all(probs) |
| else: |
| is_scalar = isinstance(logits, Number) |
| (self.logits,) = broadcast_all(logits) |
| self._param = self.probs if probs is not None else self.logits |
| if is_scalar: |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self._param.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Bernoulli, _instance) |
| batch_shape = torch.Size(batch_shape) |
| if "probs" in self.__dict__: |
| new.probs = self.probs.expand(batch_shape) |
| new._param = new.probs |
| if "logits" in self.__dict__: |
| new.logits = self.logits.expand(batch_shape) |
| new._param = new.logits |
| super(Bernoulli, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| def _new(self, *args, **kwargs): |
| return self._param.new(*args, **kwargs) |
| |
| @property |
| def mean(self): |
| return self.probs |
| |
| @property |
| def mode(self): |
| mode = (self.probs >= 0.5).to(self.probs) |
| mode[self.probs == 0.5] = nan |
| return mode |
| |
| @property |
| def variance(self): |
| return self.probs * (1 - self.probs) |
| |
| @lazy_property |
| def logits(self): |
| return probs_to_logits(self.probs, is_binary=True) |
| |
| @lazy_property |
| def probs(self): |
| return logits_to_probs(self.logits, is_binary=True) |
| |
| @property |
| def param_shape(self): |
| return self._param.size() |
| |
| def sample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| with torch.no_grad(): |
| return torch.bernoulli(self.probs.expand(shape)) |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| logits, value = broadcast_all(self.logits, value) |
| return -binary_cross_entropy_with_logits(logits, value, reduction="none") |
| |
| def entropy(self): |
| return binary_cross_entropy_with_logits( |
| self.logits, self.probs, reduction="none" |
| ) |
| |
| def enumerate_support(self, expand=True): |
| values = torch.arange(2, dtype=self._param.dtype, device=self._param.device) |
| values = values.view((-1,) + (1,) * len(self._batch_shape)) |
| if expand: |
| values = values.expand((-1,) + self._batch_shape) |
| return values |
| |
| @property |
| def _natural_params(self): |
| return (torch.logit(self.probs),) |
| |
| def _log_normalizer(self, x): |
| return torch.log1p(torch.exp(x)) |