| import math |
| from numbers import Number |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import AffineTransform, ExpTransform |
| from torch.distributions.uniform import Uniform |
| from torch.distributions.utils import broadcast_all, euler_constant |
| |
| __all__ = ["Gumbel"] |
| |
| |
| class Gumbel(TransformedDistribution): |
| r""" |
| Samples from a Gumbel Distribution. |
| |
| Examples:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
| >>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) |
| >>> m.sample() # sample from Gumbel distribution with loc=1, scale=2 |
| tensor([ 1.0124]) |
| |
| Args: |
| loc (float or Tensor): Location parameter of the distribution |
| scale (float or Tensor): Scale parameter of the distribution |
| """ |
| arg_constraints = {"loc": constraints.real, "scale": constraints.positive} |
| support = constraints.real |
| |
| def __init__(self, loc, scale, validate_args=None): |
| self.loc, self.scale = broadcast_all(loc, scale) |
| finfo = torch.finfo(self.loc.dtype) |
| if isinstance(loc, Number) and isinstance(scale, Number): |
| base_dist = Uniform(finfo.tiny, 1 - finfo.eps, validate_args=validate_args) |
| else: |
| base_dist = Uniform( |
| torch.full_like(self.loc, finfo.tiny), |
| torch.full_like(self.loc, 1 - finfo.eps), |
| validate_args=validate_args, |
| ) |
| transforms = [ |
| ExpTransform().inv, |
| AffineTransform(loc=0, scale=-torch.ones_like(self.scale)), |
| ExpTransform().inv, |
| AffineTransform(loc=loc, scale=-self.scale), |
| ] |
| super().__init__(base_dist, transforms, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Gumbel, _instance) |
| new.loc = self.loc.expand(batch_shape) |
| new.scale = self.scale.expand(batch_shape) |
| return super().expand(batch_shape, _instance=new) |
| |
| # Explicitly defining the log probability function for Gumbel due to precision issues |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| y = (self.loc - value) / self.scale |
| return (y - y.exp()) - self.scale.log() |
| |
| @property |
| def mean(self): |
| return self.loc + self.scale * euler_constant |
| |
| @property |
| def mode(self): |
| return self.loc |
| |
| @property |
| def stddev(self): |
| return (math.pi / math.sqrt(6)) * self.scale |
| |
| @property |
| def variance(self): |
| return self.stddev.pow(2) |
| |
| def entropy(self): |
| return self.scale.log() + (1 + euler_constant) |