| import math |
| |
| import torch |
| from torch import inf |
| from torch.distributions import constraints |
| from torch.distributions.normal import Normal |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import AbsTransform |
| |
| __all__ = ["HalfNormal"] |
| |
| |
| class HalfNormal(TransformedDistribution): |
| r""" |
| Creates a half-normal distribution parameterized by `scale` where:: |
| |
| X ~ Normal(0, scale) |
| Y = |X| ~ HalfNormal(scale) |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
| >>> m = HalfNormal(torch.tensor([1.0])) |
| >>> m.sample() # half-normal distributed with scale=1 |
| tensor([ 0.1046]) |
| |
| Args: |
| scale (float or Tensor): scale of the full Normal distribution |
| """ |
| arg_constraints = {"scale": constraints.positive} |
| support = constraints.nonnegative |
| has_rsample = True |
| |
| def __init__(self, scale, validate_args=None): |
| base_dist = Normal(0, scale, validate_args=False) |
| super().__init__(base_dist, AbsTransform(), validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(HalfNormal, _instance) |
| return super().expand(batch_shape, _instance=new) |
| |
| @property |
| def scale(self): |
| return self.base_dist.scale |
| |
| @property |
| def mean(self): |
| return self.scale * math.sqrt(2 / math.pi) |
| |
| @property |
| def mode(self): |
| return torch.zeros_like(self.scale) |
| |
| @property |
| def variance(self): |
| return self.scale.pow(2) * (1 - 2 / math.pi) |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| log_prob = self.base_dist.log_prob(value) + math.log(2) |
| log_prob = torch.where(value >= 0, log_prob, -inf) |
| return log_prob |
| |
| def cdf(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return 2 * self.base_dist.cdf(value) - 1 |
| |
| def icdf(self, prob): |
| return self.base_dist.icdf((prob + 1) / 2) |
| |
| def entropy(self): |
| return self.base_dist.entropy() - math.log(2) |