| import torch |
| from torch import nan |
| from torch.distributions import constraints |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import AffineTransform, PowerTransform |
| from torch.distributions.uniform import Uniform |
| from torch.distributions.utils import broadcast_all, euler_constant |
| |
| __all__ = ["Kumaraswamy"] |
| |
| |
| def _moments(a, b, n): |
| """ |
| Computes nth moment of Kumaraswamy using using torch.lgamma |
| """ |
| arg1 = 1 + n / a |
| log_value = torch.lgamma(arg1) + torch.lgamma(b) - torch.lgamma(arg1 + b) |
| return b * torch.exp(log_value) |
| |
| |
| class Kumaraswamy(TransformedDistribution): |
| r""" |
| Samples from a Kumaraswamy distribution. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
| >>> m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0])) |
| >>> m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1 |
| tensor([ 0.1729]) |
| |
| Args: |
| concentration1 (float or Tensor): 1st concentration parameter of the distribution |
| (often referred to as alpha) |
| concentration0 (float or Tensor): 2nd concentration parameter of the distribution |
| (often referred to as beta) |
| """ |
| arg_constraints = { |
| "concentration1": constraints.positive, |
| "concentration0": constraints.positive, |
| } |
| support = constraints.unit_interval |
| has_rsample = True |
| |
| def __init__(self, concentration1, concentration0, validate_args=None): |
| self.concentration1, self.concentration0 = broadcast_all( |
| concentration1, concentration0 |
| ) |
| finfo = torch.finfo(self.concentration0.dtype) |
| base_dist = Uniform( |
| torch.full_like(self.concentration0, 0), |
| torch.full_like(self.concentration0, 1), |
| validate_args=validate_args, |
| ) |
| transforms = [ |
| PowerTransform(exponent=self.concentration0.reciprocal()), |
| AffineTransform(loc=1.0, scale=-1.0), |
| PowerTransform(exponent=self.concentration1.reciprocal()), |
| ] |
| super().__init__(base_dist, transforms, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Kumaraswamy, _instance) |
| new.concentration1 = self.concentration1.expand(batch_shape) |
| new.concentration0 = self.concentration0.expand(batch_shape) |
| return super().expand(batch_shape, _instance=new) |
| |
| @property |
| def mean(self): |
| return _moments(self.concentration1, self.concentration0, 1) |
| |
| @property |
| def mode(self): |
| # Evaluate in log-space for numerical stability. |
| log_mode = ( |
| self.concentration0.reciprocal() * (-self.concentration0).log1p() |
| - (-self.concentration0 * self.concentration1).log1p() |
| ) |
| log_mode[(self.concentration0 < 1) | (self.concentration1 < 1)] = nan |
| return log_mode.exp() |
| |
| @property |
| def variance(self): |
| return _moments(self.concentration1, self.concentration0, 2) - torch.pow( |
| self.mean, 2 |
| ) |
| |
| def entropy(self): |
| t1 = 1 - self.concentration1.reciprocal() |
| t0 = 1 - self.concentration0.reciprocal() |
| H0 = torch.digamma(self.concentration0 + 1) + euler_constant |
| return ( |
| t0 |
| + t1 * H0 |
| - torch.log(self.concentration1) |
| - torch.log(self.concentration0) |
| ) |