| from torch.distributions import constraints |
| from torch.distributions.exponential import Exponential |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import AffineTransform, ExpTransform |
| from torch.distributions.utils import broadcast_all |
| |
| __all__ = ["Pareto"] |
| |
| |
| class Pareto(TransformedDistribution): |
| r""" |
| Samples from a Pareto Type 1 distribution. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
| >>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) |
| >>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 |
| tensor([ 1.5623]) |
| |
| Args: |
| scale (float or Tensor): Scale parameter of the distribution |
| alpha (float or Tensor): Shape parameter of the distribution |
| """ |
| arg_constraints = {"alpha": constraints.positive, "scale": constraints.positive} |
| |
| def __init__(self, scale, alpha, validate_args=None): |
| self.scale, self.alpha = broadcast_all(scale, alpha) |
| base_dist = Exponential(self.alpha, validate_args=validate_args) |
| transforms = [ExpTransform(), AffineTransform(loc=0, scale=self.scale)] |
| super().__init__(base_dist, transforms, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Pareto, _instance) |
| new.scale = self.scale.expand(batch_shape) |
| new.alpha = self.alpha.expand(batch_shape) |
| return super().expand(batch_shape, _instance=new) |
| |
| @property |
| def mean(self): |
| # mean is inf for alpha <= 1 |
| a = self.alpha.clamp(min=1) |
| return a * self.scale / (a - 1) |
| |
| @property |
| def mode(self): |
| return self.scale |
| |
| @property |
| def variance(self): |
| # var is inf for alpha <= 2 |
| a = self.alpha.clamp(min=2) |
| return self.scale.pow(2) * a / ((a - 1).pow(2) * (a - 2)) |
| |
| @constraints.dependent_property(is_discrete=False, event_dim=0) |
| def support(self): |
| return constraints.greater_than_eq(self.scale) |
| |
| def entropy(self): |
| return (self.scale / self.alpha).log() + (1 + self.alpha.reciprocal()) |