| from numbers import Number |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import SigmoidTransform |
| from torch.distributions.utils import ( |
| broadcast_all, |
| clamp_probs, |
| lazy_property, |
| logits_to_probs, |
| probs_to_logits, |
| ) |
| |
| __all__ = ["LogitRelaxedBernoulli", "RelaxedBernoulli"] |
| |
| |
| class LogitRelaxedBernoulli(Distribution): |
| r""" |
| Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs` |
| or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli |
| distribution. |
| |
| Samples are logits of values in (0, 1). See [1] for more details. |
| |
| Args: |
| temperature (Tensor): relaxation temperature |
| probs (Number, Tensor): the probability of sampling `1` |
| logits (Number, Tensor): the log-odds of sampling `1` |
| |
| [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random |
| Variables (Maddison et al, 2017) |
| |
| [2] Categorical Reparametrization with Gumbel-Softmax |
| (Jang et al, 2017) |
| """ |
| arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} |
| support = constraints.real |
| |
| def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
| self.temperature = temperature |
| if (probs is None) == (logits is None): |
| raise ValueError( |
| "Either `probs` or `logits` must be specified, but not both." |
| ) |
| if probs is not None: |
| is_scalar = isinstance(probs, Number) |
| (self.probs,) = broadcast_all(probs) |
| else: |
| is_scalar = isinstance(logits, Number) |
| (self.logits,) = broadcast_all(logits) |
| self._param = self.probs if probs is not None else self.logits |
| if is_scalar: |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self._param.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(LogitRelaxedBernoulli, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.temperature = self.temperature |
| if "probs" in self.__dict__: |
| new.probs = self.probs.expand(batch_shape) |
| new._param = new.probs |
| if "logits" in self.__dict__: |
| new.logits = self.logits.expand(batch_shape) |
| new._param = new.logits |
| super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| def _new(self, *args, **kwargs): |
| return self._param.new(*args, **kwargs) |
| |
| @lazy_property |
| def logits(self): |
| return probs_to_logits(self.probs, is_binary=True) |
| |
| @lazy_property |
| def probs(self): |
| return logits_to_probs(self.logits, is_binary=True) |
| |
| @property |
| def param_shape(self): |
| return self._param.size() |
| |
| def rsample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| probs = clamp_probs(self.probs.expand(shape)) |
| uniforms = clamp_probs( |
| torch.rand(shape, dtype=probs.dtype, device=probs.device) |
| ) |
| return ( |
| uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p() |
| ) / self.temperature |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| logits, value = broadcast_all(self.logits, value) |
| diff = logits - value.mul(self.temperature) |
| return self.temperature.log() + diff - 2 * diff.exp().log1p() |
| |
| |
| class RelaxedBernoulli(TransformedDistribution): |
| r""" |
| Creates a RelaxedBernoulli distribution, parametrized by |
| :attr:`temperature`, and either :attr:`probs` or :attr:`logits` |
| (but not both). This is a relaxed version of the `Bernoulli` distribution, |
| so the values are in (0, 1), and has reparametrizable samples. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
| >>> m = RelaxedBernoulli(torch.tensor([2.2]), |
| ... torch.tensor([0.1, 0.2, 0.3, 0.99])) |
| >>> m.sample() |
| tensor([ 0.2951, 0.3442, 0.8918, 0.9021]) |
| |
| Args: |
| temperature (Tensor): relaxation temperature |
| probs (Number, Tensor): the probability of sampling `1` |
| logits (Number, Tensor): the log-odds of sampling `1` |
| """ |
| arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} |
| support = constraints.unit_interval |
| has_rsample = True |
| |
| def __init__(self, temperature, probs=None, logits=None, validate_args=None): |
| base_dist = LogitRelaxedBernoulli(temperature, probs, logits) |
| super().__init__(base_dist, SigmoidTransform(), validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(RelaxedBernoulli, _instance) |
| return super().expand(batch_shape, _instance=new) |
| |
| @property |
| def temperature(self): |
| return self.base_dist.temperature |
| |
| @property |
| def logits(self): |
| return self.base_dist.logits |
| |
| @property |
| def probs(self): |
| return self.base_dist.probs |