| from numbers import Number |
| |
| import torch |
| from torch import nan |
| from torch.distributions import constraints |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import broadcast_all |
| |
| __all__ = ["Uniform"] |
| |
| |
| class Uniform(Distribution): |
| r""" |
| Generates uniformly distributed random samples from the half-open interval |
| ``[low, high)``. |
| |
| Example:: |
| |
| >>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0])) |
| >>> m.sample() # uniformly distributed in the range [0.0, 5.0) |
| >>> # xdoctest: +SKIP |
| tensor([ 2.3418]) |
| |
| Args: |
| low (float or Tensor): lower range (inclusive). |
| high (float or Tensor): upper range (exclusive). |
| """ |
| # TODO allow (loc,scale) parameterization to allow independent constraints. |
| arg_constraints = { |
| "low": constraints.dependent(is_discrete=False, event_dim=0), |
| "high": constraints.dependent(is_discrete=False, event_dim=0), |
| } |
| has_rsample = True |
| |
| @property |
| def mean(self): |
| return (self.high + self.low) / 2 |
| |
| @property |
| def mode(self): |
| return nan * self.high |
| |
| @property |
| def stddev(self): |
| return (self.high - self.low) / 12**0.5 |
| |
| @property |
| def variance(self): |
| return (self.high - self.low).pow(2) / 12 |
| |
| def __init__(self, low, high, validate_args=None): |
| self.low, self.high = broadcast_all(low, high) |
| |
| if isinstance(low, Number) and isinstance(high, Number): |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self.low.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| |
| if self._validate_args and not torch.lt(self.low, self.high).all(): |
| raise ValueError("Uniform is not defined when low>= high") |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Uniform, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.low = self.low.expand(batch_shape) |
| new.high = self.high.expand(batch_shape) |
| super(Uniform, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| @constraints.dependent_property(is_discrete=False, event_dim=0) |
| def support(self): |
| return constraints.interval(self.low, self.high) |
| |
| def rsample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| rand = torch.rand(shape, dtype=self.low.dtype, device=self.low.device) |
| return self.low + rand * (self.high - self.low) |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| lb = self.low.le(value).type_as(self.low) |
| ub = self.high.gt(value).type_as(self.low) |
| return torch.log(lb.mul(ub)) - torch.log(self.high - self.low) |
| |
| def cdf(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| result = (value - self.low) / (self.high - self.low) |
| return result.clamp(min=0, max=1) |
| |
| def icdf(self, value): |
| result = value * (self.high - self.low) + self.low |
| return result |
| |
| def entropy(self): |
| return torch.log(self.high - self.low) |