| """ |
| This module contains tensor creation utilities. |
| """ |
| |
| import collections.abc |
| import math |
| import warnings |
| from typing import cast, List, Optional, Tuple, Union |
| |
| import torch |
| |
| _INTEGRAL_TYPES = [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64] |
| _FLOATING_TYPES = [torch.float16, torch.bfloat16, torch.float32, torch.float64] |
| _COMPLEX_TYPES = [torch.complex32, torch.complex64, torch.complex128] |
| _BOOLEAN_OR_INTEGRAL_TYPES = [torch.bool, *_INTEGRAL_TYPES] |
| _FLOATING_OR_COMPLEX_TYPES = [*_FLOATING_TYPES, *_COMPLEX_TYPES] |
| |
| |
| def _uniform_random_(t: torch.Tensor, low: float, high: float) -> torch.Tensor: |
| # uniform_ requires to-from <= std::numeric_limits<scalar_t>::max() |
| # Work around this by scaling the range before and after the PRNG |
| if high - low >= torch.finfo(t.dtype).max: |
| return t.uniform_(low / 2, high / 2).mul_(2) |
| else: |
| return t.uniform_(low, high) |
| |
| |
| def make_tensor( |
| *shape: Union[int, torch.Size, List[int], Tuple[int, ...]], |
| dtype: torch.dtype, |
| device: Union[str, torch.device], |
| low: Optional[float] = None, |
| high: Optional[float] = None, |
| requires_grad: bool = False, |
| noncontiguous: bool = False, |
| exclude_zero: bool = False, |
| memory_format: Optional[torch.memory_format] = None, |
| ) -> torch.Tensor: |
| r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with |
| values uniformly drawn from ``[low, high)``. |
| |
| If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable |
| finite values then they are clamped to the lowest or highest representable finite value, respectively. |
| If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`, |
| which depend on :attr:`dtype`. |
| |
| +---------------------------+------------+----------+ |
| | ``dtype`` | ``low`` | ``high`` | |
| +===========================+============+==========+ |
| | boolean type | ``0`` | ``2`` | |
| +---------------------------+------------+----------+ |
| | unsigned integral type | ``0`` | ``10`` | |
| +---------------------------+------------+----------+ |
| | signed integral types | ``-9`` | ``10`` | |
| +---------------------------+------------+----------+ |
| | floating types | ``-9`` | ``9`` | |
| +---------------------------+------------+----------+ |
| | complex types | ``-9`` | ``9`` | |
| +---------------------------+------------+----------+ |
| |
| Args: |
| shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor. |
| dtype (:class:`torch.dtype`): The data type of the returned tensor. |
| device (Union[str, torch.device]): The device of the returned tensor. |
| low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is |
| clamped to the least representable finite value of the given dtype. When ``None`` (default), |
| this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``. |
| high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is |
| clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value |
| is determined based on the :attr:`dtype` (see the table above). Default: ``None``. |
| |
| .. deprecated:: 2.1 |
| |
| Passing ``low==high`` to :func:`~torch.testing.make_tensor` for floating or complex types is deprecated |
| since 2.1 and will be removed in 2.3. Use :func:`torch.full` instead. |
| |
| requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``. |
| noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is |
| ignored if the constructed tensor has fewer than two elements. Mutually exclusive with ``memory_format``. |
| exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value |
| depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating |
| point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the |
| :attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number |
| whose real and imaginary parts are both the smallest positive normal number representable by the complex |
| type. Default ``False``. |
| memory_format (Optional[torch.memory_format]): The memory format of the returned tensor. Mutually exclusive |
| with ``noncontiguous``. |
| |
| Raises: |
| ValueError: If ``requires_grad=True`` is passed for integral `dtype` |
| ValueError: If ``low >= high``. |
| ValueError: If either :attr:`low` or :attr:`high` is ``nan``. |
| ValueError: If both :attr:`noncontiguous` and :attr:`memory_format` are passed. |
| TypeError: If :attr:`dtype` isn't supported by this function. |
| |
| Examples: |
| >>> # xdoctest: +SKIP |
| >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA) |
| >>> from torch.testing import make_tensor |
| >>> # Creates a float tensor with values in [-1, 1) |
| >>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1) |
| >>> # xdoctest: +SKIP |
| tensor([ 0.1205, 0.2282, -0.6380]) |
| >>> # Creates a bool tensor on CUDA |
| >>> make_tensor((2, 2), device='cuda', dtype=torch.bool) |
| tensor([[False, False], |
| [False, True]], device='cuda:0') |
| """ |
| |
| def modify_low_high( |
| low: Optional[float], |
| high: Optional[float], |
| *, |
| lowest_inclusive: float, |
| highest_exclusive: float, |
| default_low: float, |
| default_high: float, |
| ) -> Tuple[float, float]: |
| """ |
| Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high) |
| if required. |
| """ |
| |
| def clamp(a: float, l: float, h: float) -> float: |
| return min(max(a, l), h) |
| |
| low = low if low is not None else default_low |
| high = high if high is not None else default_high |
| |
| if any(isinstance(value, float) and math.isnan(value) for value in [low, high]): |
| raise ValueError( |
| f"`low` and `high` cannot be NaN, but got {low=} and {high=}" |
| ) |
| elif low == high and dtype in _FLOATING_OR_COMPLEX_TYPES: |
| warnings.warn( |
| "Passing `low==high` to `torch.testing.make_tensor` for floating or complex types " |
| "is deprecated since 2.1 and will be removed in 2.3. " |
| "Use torch.full(...) instead.", |
| FutureWarning, |
| ) |
| elif low >= high: |
| raise ValueError(f"`low` must be less than `high`, but got {low} >= {high}") |
| elif high < lowest_inclusive or low >= highest_exclusive: |
| raise ValueError( |
| f"The value interval specified by `low` and `high` is [{low}, {high}), " |
| f"but {dtype} only supports [{lowest_inclusive}, {highest_exclusive})" |
| ) |
| |
| low = clamp(low, lowest_inclusive, highest_exclusive) |
| high = clamp(high, lowest_inclusive, highest_exclusive) |
| |
| if dtype in _BOOLEAN_OR_INTEGRAL_TYPES: |
| # 1. `low` is ceiled to avoid creating values smaller than `low` and thus outside the specified interval |
| # 2. Following the same reasoning as for 1., `high` should be floored. However, the higher bound of |
| # `torch.randint` is exclusive, and thus we need to ceil here as well. |
| return math.ceil(low), math.ceil(high) |
| |
| return low, high |
| |
| if len(shape) == 1 and isinstance(shape[0], collections.abc.Sequence): |
| shape = shape[0] # type: ignore[assignment] |
| shape = cast(Tuple[int, ...], tuple(shape)) |
| |
| if noncontiguous and memory_format is not None: |
| raise ValueError( |
| f"The parameters `noncontiguous` and `memory_format` are mutually exclusive, " |
| f"but got {noncontiguous=} and {memory_format=}" |
| ) |
| |
| if requires_grad and dtype in _BOOLEAN_OR_INTEGRAL_TYPES: |
| raise ValueError( |
| f"`requires_grad=True` is not supported for boolean and integral dtypes, but got {dtype=}" |
| ) |
| |
| if dtype is torch.bool: |
| low, high = cast( |
| Tuple[int, int], |
| modify_low_high( |
| low, |
| high, |
| lowest_inclusive=0, |
| highest_exclusive=2, |
| default_low=0, |
| default_high=2, |
| ), |
| ) |
| result = torch.randint(low, high, shape, device=device, dtype=dtype) |
| elif dtype in _BOOLEAN_OR_INTEGRAL_TYPES: |
| low, high = cast( |
| Tuple[int, int], |
| modify_low_high( |
| low, |
| high, |
| lowest_inclusive=torch.iinfo(dtype).min, |
| highest_exclusive=torch.iinfo(dtype).max |
| # In theory, `highest_exclusive` should always be the maximum value + 1. However, `torch.randint` |
| # internally converts the bounds to an int64 and would overflow. In other words: `torch.randint` cannot |
| # sample 2**63 - 1, i.e. the maximum value of `torch.int64` and we need to account for that here. |
| + (1 if dtype is not torch.int64 else 0), |
| # This is incorrect for `torch.uint8`, but since we clamp to `lowest`, i.e. 0 for `torch.uint8`, |
| # _after_ we use the default value, we don't need to special case it here |
| default_low=-9, |
| default_high=10, |
| ), |
| ) |
| result = torch.randint(low, high, shape, device=device, dtype=dtype) |
| elif dtype in _FLOATING_OR_COMPLEX_TYPES: |
| low, high = modify_low_high( |
| low, |
| high, |
| lowest_inclusive=torch.finfo(dtype).min, |
| highest_exclusive=torch.finfo(dtype).max, |
| default_low=-9, |
| default_high=9, |
| ) |
| result = torch.empty(shape, device=device, dtype=dtype) |
| _uniform_random_( |
| torch.view_as_real(result) if dtype in _COMPLEX_TYPES else result, low, high |
| ) |
| else: |
| raise TypeError( |
| f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()." |
| " To request support, file an issue at: https://github.com/pytorch/pytorch/issues" |
| ) |
| |
| if noncontiguous and result.numel() > 1: |
| result = torch.repeat_interleave(result, 2, dim=-1) |
| result = result[..., ::2] |
| elif memory_format is not None: |
| result = result.clone(memory_format=memory_format) |
| |
| if exclude_zero: |
| result[result == 0] = ( |
| 1 if dtype in _BOOLEAN_OR_INTEGRAL_TYPES else torch.finfo(dtype).tiny |
| ) |
| |
| if dtype in _FLOATING_OR_COMPLEX_TYPES: |
| result.requires_grad = requires_grad |
| |
| return result |