| """ |
| This module contains utility method for mobile model optimization and lint. |
| """ |
| |
| import torch |
| from enum import Enum |
| from torch._C import _MobileOptimizerType as MobileOptimizerType |
| from typing import Optional, Set, List, AnyStr |
| |
| class LintCode(Enum): |
| BUNDLED_INPUT = 1 |
| REQUIRES_GRAD = 2 |
| DROPOUT = 3 |
| BATCHNORM = 4 |
| |
| def optimize_for_mobile( |
| script_module: torch.jit.ScriptModule, |
| optimization_blocklist: Optional[Set[MobileOptimizerType]] = None, |
| preserved_methods: Optional[List[AnyStr]] = None, |
| backend: str = 'CPU') -> torch.jit.RecursiveScriptModule: |
| """ |
| Args: |
| script_module: An instance of torch script module with type of ScriptModule. |
| optimization_blocklist: A set with type of MobileOptimizerType. When set is not passed, |
| optimization method will run all the optimizer pass; otherwise, optimizer |
| method will run the optimization pass that is not included inside optimization_blocklist. |
| preserved_methods: A list of methods that needed to be preserved when freeze_module pass is invoked |
| backend: Device type to use for running the result model ('CPU'(default), 'Vulkan' or 'Metal'). |
| Returns: |
| A new optimized torch script module |
| """ |
| if not isinstance(script_module, torch.jit.ScriptModule): |
| raise TypeError( |
| f'Got {type(script_module)}, but ScriptModule is expected.') |
| |
| if optimization_blocklist is None: |
| optimization_blocklist = set() |
| |
| if preserved_methods is None: |
| preserved_methods = [] |
| |
| # Convert potential byte arrays into strings (if there is any) to pass type checking |
| # Here we use a new name as assigning it back to preserved_methods will invoke |
| # mypy errors (i.e. List[AnyStr] = List[str]) |
| preserved_methods_str: List[str] = [str(method) for method in preserved_methods] |
| |
| bundled_inputs_attributes = _get_bundled_inputs_preserved_attributes(script_module, preserved_methods_str) |
| if all(hasattr(script_module, method) for method in bundled_inputs_attributes): |
| preserved_methods_str = list(set(preserved_methods_str + bundled_inputs_attributes)) |
| |
| non_exist_methods = [] |
| for method in preserved_methods_str: |
| if not hasattr(script_module, method): |
| non_exist_methods.append(method) |
| if non_exist_methods: |
| raise AttributeError( |
| f"The following methods to preserve do not exist in script_module: {', '.join(non_exist_methods)}") |
| |
| backend = backend.lower() |
| if backend == 'cpu': |
| optimized_cpp_module = torch._C._jit_pass_optimize_for_mobile( |
| script_module._c, |
| optimization_blocklist, |
| preserved_methods_str) |
| elif backend == 'vulkan': |
| optimized_cpp_module = torch._C._jit_pass_vulkan_optimize_for_mobile( |
| script_module._c, |
| optimization_blocklist, |
| preserved_methods_str) |
| elif backend == 'metal': |
| optimized_cpp_module = torch._C._jit_pass_metal_optimize_for_mobile(script_module._c, preserved_methods_str) |
| else: |
| raise TypeError("Unknown backend, must be one of 'CPU', 'Vulkan' or 'Metal'") |
| |
| return torch.jit._recursive.wrap_cpp_module(optimized_cpp_module) |
| |
| |
| def generate_mobile_module_lints(script_module: torch.jit.ScriptModule): |
| """ |
| Args: |
| script_module: An instance of torch script module with type of ScriptModule |
| |
| Returns: |
| lint_map: A list of dictionary that contains modules lints |
| """ |
| if not isinstance(script_module, torch.jit.ScriptModule): |
| raise TypeError( |
| f'Got {type(script_module)}, but ScriptModule is expected.') |
| |
| lint_list = [] |
| |
| if not hasattr(script_module, "_generate_bundled_inputs_for_forward"): |
| lint_list.append({"name": LintCode.BUNDLED_INPUT.name, "message": "No bundled input for forward, please add bundled inputs " |
| "before saving the module using torch.utils.bundled_inputs.augment_model_with_bundled_inputs."}) |
| |
| for name, param in script_module.named_parameters(): |
| if param.requires_grad: |
| lint_list.append({"name": LintCode.REQUIRES_GRAD.name, "message": f"Param {name} requires grad, " |
| "please set torch.no_grad() to reduce memory usage and improve computation speed during " |
| "inference phase."}) |
| |
| op_names = torch.jit.export_opnames(script_module) |
| for op_name in op_names: |
| if "dropout" in op_name: |
| lint_list.append({"name": LintCode.DROPOUT.name, "message": "Operator {} exists, remember to call eval() before " |
| "saving the module.and call torch.utils.mobile_optimizer.optimize_for_mobile to drop dropout " |
| "operator.".format(op_name)}) |
| if "batch_norm" in op_name: |
| lint_list.append({"name": LintCode.BATCHNORM.name, "message": "Operator {} exists, remember to call eval() before " |
| "saving the module and call torch.utils.mobile_optimizer.optimize_for_mobile to drop batch_norm " |
| "operator.".format(op_name)}) |
| |
| return lint_list |
| |
| def _get_bundled_inputs_preserved_attributes(script_module: torch.jit.ScriptModule, preserved_methods: List[str]) -> List[str]: |
| |
| bundled_inputs_attributes = [] |
| # Has bundled inputs for forward |
| if hasattr(script_module, 'get_all_bundled_inputs'): |
| bundled_inputs_attributes.append('get_all_bundled_inputs') |
| bundled_inputs_attributes.append('get_num_bundled_inputs') |
| |
| # Bundled inputs in module after the change that introduced bundled inputs for multiple functions |
| if hasattr(script_module, 'get_bundled_inputs_functions_and_info'): |
| bundled_inputs_attributes.append('get_bundled_inputs_functions_and_info') |
| all_info = script_module.get_bundled_inputs_functions_and_info() |
| for function_name in all_info: |
| if function_name not in preserved_methods: |
| bundled_inputs_attributes.append(function_name) |
| bundled_inputs_attributes.append("get_all_bundled_inputs_for_" + function_name) |
| bundled_inputs_attributes.append("_bundled_inputs_deflated_" + function_name) |
| |
| return bundled_inputs_attributes |