blob: ceafa53b72f1c51cc0d6fe7deea56de839ec402f [file] [log] [blame]
#define TORCH_ASSERT_NO_OPERATORS
#define _USE_MATH_DEFINES
#include <ATen/native/Activation.h>
#include <cmath>
#include <thrust/tuple.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/core/TensorBase.h>
#include <c10/core/Scalar.h>
#include <c10/cuda/CUDAMathCompat.h>
#include <ATen/cuda/ApplyGridUtils.cuh>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/native/cuda/Loops.cuh>
namespace at {
namespace native {
namespace {
void hardsigmoid_kernel(TensorIteratorBase& iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"hardsigmoid_cuda",
[&]() {
using opmath_t = at::opmath_type<scalar_t>;
const opmath_t zero(0.0f);
const opmath_t one_sixth(1.0f / 6.0f);
const opmath_t three(3.0f);
const opmath_t six(6.0f);
gpu_kernel(
iter,
[zero, one_sixth, three, six] GPU_LAMBDA(
scalar_t self_val) -> scalar_t {
opmath_t x = static_cast<opmath_t>(self_val);
return std::min(std::max(x + three, zero), six) * one_sixth;
});
});
}
void hardsigmoid_backward_kernel(TensorIteratorBase& iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
iter.dtype(),
"hardsigmoid_backward_cuda",
[&]() {
using opmath_t = at::opmath_type<scalar_t>;
const opmath_t zero(0.0f);
const opmath_t three(3.0f);
const opmath_t neg_three(-3.0f);
const opmath_t one_sixth(1.0f / 6.0f);
gpu_kernel(
iter,
[zero, three, neg_three, one_sixth] GPU_LAMBDA(
scalar_t grad_val_, scalar_t self_val_) -> scalar_t {
opmath_t grad_val = static_cast<opmath_t>(grad_val_);
opmath_t self_val = static_cast<opmath_t>(self_val_);
return (self_val > neg_three && self_val < three)
? grad_val * one_sixth
: zero;
});
});
}
} // namespace
REGISTER_DISPATCH(hardsigmoid_stub, &hardsigmoid_kernel);
REGISTER_DISPATCH(hardsigmoid_backward_stub, &hardsigmoid_backward_kernel);
} // namespace native
} // namespace at