| #pragma once |
| |
| // This file provides two functions to help write GPU elementwise kernels: |
| // |
| // gpu_kernel(TensorIterator iter, <lambda>) |
| // gpu_kernel_with_scalars(TensorIterator iter, <lambda>) |
| // |
| // The gpu_kernel_with_scalars generates specializations that support a |
| // single scalar CPU argument, such as from `cuda_tensor + 5`. The CPU scalar |
| // is lifted to a kernel parameter instead of copying to device memory. |
| // This should be used in conjunction with TensorIterator::allow_cpu_scalars_, |
| // which is the default for TensorIterator::binary_op. Otherwise, all inputs |
| // and the output must be on the GPU. |
| // |
| // For example, to write a reciprocal kernel for GPU float Tensors: |
| // |
| // gpu_kernel(iter, []GPU_LAMBDA(float a) { |
| // return 1.0f / a; |
| // }); |
| // |
| // To write a multiplication kernel for GPU float Tensors where one argument |
| // may be a CPU scalar: |
| // |
| // gpu_kernel_with_scalars(iter, []GPU_LAMBDA(float a, float b) { |
| // return a * b; |
| // }); |
| // |
| // See BinaryOpsKernel.cu for the complete implementation |
| // |
| |
| #include <type_traits> |
| #include <tuple> |
| #include <iostream> |
| |
| #include <ATen/cuda/CUDAContext.h> |
| #include <ATen/core/Array.h> |
| #include <ATen/detail/FunctionTraits.h> |
| #include <ATen/native/TensorIterator.h> |
| #include <c10/macros/Macros.h> |
| #include <c10/core/DynamicCast.h> |
| #include <c10/core/ScalarType.h> |
| #include <c10/util/TypeCast.h> |
| #include <c10/util/C++17.h> |
| |
| |
| #ifdef __NVCC__ |
| #define ASSERT_HOST_DEVICE_LAMBDA(type) \ |
| static_assert(__nv_is_extended_host_device_lambda_closure_type(type), \ |
| #type " must be a __host__ __device__ lambda") |
| #else |
| #define ASSERT_HOST_DEVICE_LAMBDA(type) |
| #endif |
| |
| |
| namespace at { namespace native { |
| |
| template<int vec_size, typename func_t, typename array_t> |
| C10_LAUNCH_BOUNDS_1(num_threads()) |
| __global__ void vectorized_elementwise_kernel(int N, func_t f, array_t data) { |
| using traits = function_traits<func_t>; |
| int remaining = N - block_work_size() * blockIdx.x; |
| |
| if (remaining < block_work_size()) { // if this block handles the reminder, just do a naive unrolled loop |
| auto input_calc = TrivialOffsetCalculator<traits::arity>(); |
| auto output_calc = TrivialOffsetCalculator<1>(); |
| auto loader = memory::LoadWithoutCast(); |
| auto storer = memory::StoreWithoutCast(); |
| auto policy = memory::policies::unroll<array_t, decltype(input_calc), decltype(output_calc), |
| memory::LoadWithoutCast, memory::StoreWithoutCast>( |
| data, remaining, input_calc, output_calc, loader, storer); |
| elementwise_kernel_helper(f, policy); |
| } else { // if this block has a full `block_work_size` data to handle, use vectorized memory access |
| elementwise_kernel_helper(f, memory::policies::vectorized<vec_size, array_t>(data)); |
| } |
| } |
| |
| template<typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t> |
| C10_LAUNCH_BOUNDS_1(num_threads()) |
| __global__ void unrolled_elementwise_kernel(int N, func_t f, array_t data, |
| inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s) |
| { |
| int remaining = N - block_work_size() * blockIdx.x; |
| auto policy = memory::policies::unroll<array_t, inp_calc_t, out_calc_t, loader_t, storer_t>(data, remaining, ic, oc, l, s); |
| elementwise_kernel_helper(f, policy); |
| } |
| |
| // this function assume trivial 1d and no dynamic casting |
| template<typename func_t, typename array_t> |
| static inline void launch_vectorized_kernel(int64_t N, const func_t& f, array_t data) { |
| TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max()); |
| using traits = function_traits<func_t>; |
| int64_t grid = (N + block_work_size() - 1) / block_work_size(); |
| auto stream = at::cuda::getCurrentCUDAStream(); |
| int vec_size = memory::can_vectorize_up_to<func_t>(data); |
| |
| switch (vec_size) { |
| case 4: |
| vectorized_elementwise_kernel<4, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| break; |
| case 2: |
| vectorized_elementwise_kernel<2, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| break; |
| case 1: { |
| auto input_calc = TrivialOffsetCalculator<traits::arity>(); |
| auto output_calc = TrivialOffsetCalculator<1>(); |
| auto loader = memory::LoadWithoutCast(); |
| auto storer = memory::StoreWithoutCast(); |
| unrolled_elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, input_calc, output_calc, loader, storer); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| break; |
| } |
| default: |
| TORCH_INTERNAL_ASSERT(false, "Unexpected vectorization size"); |
| } |
| } |
| |
| |
| template<typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t> |
| static inline void launch_unrolled_kernel(int64_t N, const func_t& f, array_t data, |
| inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s) |
| { |
| TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max()); |
| int64_t grid = (N + block_work_size() - 1) / block_work_size(); |
| auto stream = at::cuda::getCurrentCUDAStream(); |
| unrolled_elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, ic, oc, l, s); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| } |
| |
| template<int nt, int vt, typename func_t> |
| C10_LAUNCH_BOUNDS_2(nt, 4) |
| __global__ void elementwise_kernel(int N, func_t f) { |
| int tid = threadIdx.x; |
| int nv = nt * vt; |
| int idx = nv * blockIdx.x + tid; |
| #pragma unroll |
| for (int i = 0; i < vt; i++) { |
| if (idx < N) { |
| f(idx); |
| idx += nt; |
| } |
| } |
| } |
| |
| template<int nt, int vt, typename func_t> |
| static void launch_legacy_kernel(int64_t N, const func_t& f) { |
| TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max()); |
| if (N == 0) { |
| return; |
| } |
| dim3 block(nt); |
| dim3 grid((N + block.x * vt - 1) / (block.x * vt)); |
| auto stream = at::cuda::getCurrentCUDAStream(); |
| elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f); |
| C10_CUDA_KERNEL_LAUNCH_CHECK(); |
| } |
| |
| template <typename traits, typename func_t, typename index_t, size_t... INDEX> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i, |
| std::index_sequence<INDEX...>) { |
| (void)strides; |
| (void)i; |
| return f(c10::load<typename traits::template arg<INDEX>::type>(data[INDEX] + i * strides[INDEX])...); |
| } |
| |
| template <typename func_t, typename index_t, typename traits = function_traits<func_t>> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i) { |
| using Indices = std::make_index_sequence<traits::arity>; |
| return invoke_impl<traits>(f, data, strides, i, Indices{}); |
| } |
| |
| template <typename traits, typename func_t, typename index_t, size_t... I> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i, |
| std::index_sequence<I...>) { |
| (void)strides; |
| (void)i; |
| return f(c10::fetch_and_cast<typename traits::template arg<I>::type>(dtypes[I], data[I] + i * strides[I])...); |
| } |
| |
| template <typename func_t, typename index_t, typename traits = function_traits<func_t>> |
| C10_HOST_DEVICE typename traits::result_type |
| invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i) { |
| using Indices = std::make_index_sequence<traits::arity>; |
| return invoke_impl<traits>(f, data, strides, dtypes, i, Indices{}); |
| } |
| |
| |
| template <typename func_t> |
| void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) { |
| using traits = function_traits<func_t>; |
| using arg0_t = typename traits::result_type; |
| constexpr int ntensors = traits::arity + 1; |
| |
| TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing()); |
| TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity); |
| TORCH_INTERNAL_ASSERT(iter.noutputs() == 1); |
| |
| at::detail::Array<char*, ntensors> data; |
| for (int i = 0; i < ntensors; i++) { |
| data[i] = (char*)iter.data_ptr(i); |
| } |
| |
| int64_t numel = iter.numel(); |
| |
| bool contiguous = iter.is_contiguous(); |
| bool dynamic_casting = needs_dynamic_casting<func_t>::check(iter); |
| |
| if (!dynamic_casting) { |
| if (contiguous) { |
| launch_vectorized_kernel(numel, f, data); |
| } else { |
| auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter); |
| constexpr int unroll_factor = sizeof(arg0_t) >= 4 ? 2 : 4; |
| launch_legacy_kernel<128,unroll_factor>(numel, [=]GPU_LAMBDA(int idx) { |
| auto offsets = offset_calc.get(idx); |
| arg0_t* out = (arg0_t*)(data[0] + offsets[0]); |
| *out = invoke(f, &data.data[1], &offsets.data[1], 1); |
| }); |
| } |
| } else { |
| if (contiguous) { |
| auto loader = memory::LoadWithCast<traits::arity>(iter); |
| auto storer = memory::StoreWithCast<1>(iter); |
| auto input_offset_calculator = TrivialOffsetCalculator<traits::arity>(); |
| auto output_offset_calculator = TrivialOffsetCalculator<1>(); |
| launch_unrolled_kernel(numel, f, data, input_offset_calculator, output_offset_calculator, loader, storer); |
| } else { |
| at::detail::Array<ScalarType, ntensors> dtypes; |
| for (int i = 0; i < ntensors; i++) { |
| dtypes[i] = iter.dtype(i); |
| } |
| auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter); |
| launch_legacy_kernel<128, 4>(numel, [=]GPU_LAMBDA(int idx) { |
| auto offsets = offset_calc.get(idx); |
| void* out = data[0] + offsets[0]; |
| arg0_t result = invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1); |
| c10::cast_and_store<arg0_t>(dtypes[0], out, result); |
| }); |
| } |
| } |
| } |
| |
| }} // namespace at::native |