blob: 1214955b06d441d1b5dec7ab15136559444aa503 [file] [log] [blame]
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/AccumulateType.h>
#include <ATen/ceil_div.h>
#include <ATen/Dispatch.h>
#include <ATen/TensorUtils.h>
#include <ATen/Utils.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/native/cuda/UpSample.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/upsample_bicubic2d_native.h>
#include <ATen/ops/upsample_bicubic2d_backward_native.h>
#endif
namespace at {
namespace native {
namespace {
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
__global__ void upsample_bicubic2d_out_frame(
const int num_elements,
const accscalar_t height_scale,
const accscalar_t width_scale,
const bool align_corners,
const PackedTensorAccessor64<scalar_t, 4> idata,
PackedTensorAccessor64<scalar_t, 4> odata) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
const int batchsize = idata.size(0);
const int channels = idata.size(1);
const int input_height = idata.size(2);
const int input_width = idata.size(3);
const int output_height = odata.size(2);
const int output_width = odata.size(3);
if (index >= num_elements) {
return;
}
// Special case: input and output are the same size, just copy
const int output_x = index % output_width;
const int output_y = index / output_width;
if (input_height == output_height && input_width == output_width) {
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; c++) {
const scalar_t val = idata[n][c][output_y][output_x];
odata[n][c][output_y][output_x] = val;
}
}
return;
}
// Interpolation kernel
accscalar_t real_x = area_pixel_compute_source_index(
width_scale, output_x, align_corners, /*cubic=*/true);
int in_x = floorf(real_x);
accscalar_t t_x = real_x - in_x;
accscalar_t real_y = area_pixel_compute_source_index(
height_scale, output_y, align_corners, /*cubic=*/true);
int in_y = floorf(real_y);
accscalar_t t_y = real_y - in_y;
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; c++) {
accscalar_t coefficients[4];
for (int k = 0; k < 4; k++) {
coefficients[k] = cubic_interp1d(
upsample_get_value_bounded<scalar_t>(
idata, n, c, input_height, input_width, in_y - 1 + k, in_x - 1),
upsample_get_value_bounded<scalar_t>(
idata, n, c, input_height, input_width, in_y - 1 + k, in_x + 0),
upsample_get_value_bounded<scalar_t>(
idata, n, c, input_height, input_width, in_y - 1 + k, in_x + 1),
upsample_get_value_bounded<scalar_t>(
idata, n, c, input_height, input_width, in_y - 1 + k, in_x + 2),
t_x);
}
odata[n][c][output_y][output_x] = static_cast<scalar_t>(cubic_interp1d(
coefficients[0],
coefficients[1],
coefficients[2],
coefficients[3],
t_y));
}
}
}
// Backward (adjoint) operation 1 <- 2 (accumulates)
template <typename scalar_t, typename accscalar_t>
C10_LAUNCH_BOUNDS_1(1024)
__global__ void upsample_bicubic2d_backward_out_frame(
const int num_elements,
const accscalar_t height_scale,
const accscalar_t width_scale,
const bool align_corners,
PackedTensorAccessor64<scalar_t, 4> idata,
const PackedTensorAccessor64<scalar_t, 4> odata) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
const int batchsize = idata.size(0);
const int channels = idata.size(1);
const int input_height = idata.size(2);
const int input_width = idata.size(3);
const int output_height = odata.size(2);
const int output_width = odata.size(3);
if (index >= num_elements) {
return;
}
const int output_x = index % output_width;
const int output_y = index / output_width;
// special case: output_xust copy
if (input_height == output_height && input_width == output_width) {
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; ++c) {
const scalar_t val = odata[n][c][output_y][output_x];
idata[n][c][output_y][output_x] = val;
}
}
return;
}
accscalar_t real_x = area_pixel_compute_source_index(
width_scale, output_x, align_corners, /*cubic=*/true);
int input_x = floorf(real_x);
accscalar_t t_x = real_x - input_x;
accscalar_t real_y = area_pixel_compute_source_index(
height_scale, output_y, align_corners, /*cubic=*/true);
int input_y = floorf(real_y);
accscalar_t t_y = real_y - input_y;
accscalar_t x_coeffs[4];
accscalar_t y_coeffs[4];
get_cubic_upsampling_coefficients(x_coeffs, t_x);
get_cubic_upsampling_coefficients(y_coeffs, t_y);
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; ++c) {
scalar_t out_value = odata[n][c][output_y][output_x];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
upsample_increment_value_bounded<scalar_t, accscalar_t>(
idata,
n,
c,
input_height,
input_width,
input_y - 1 + i,
input_x - 1 + j,
out_value * y_coeffs[i] * x_coeffs[j]);
}
}
}
}
}
static void upsample_bicubic2d_out_cuda_template(
const Tensor& output,
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
TensorArg input_arg{input, "input", 1}, output_arg{output, "output", 2};
checkAllSameGPU(__func__, {input_arg, output_arg});
int output_height = output_size[0];
int output_width = output_size[1];
int input_height = input.size(2);
int input_width = input.size(3);
output.zero_();
const int num_output_elements = output_height * output_width;
const int max_threads = std::min(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
// Launch kernel
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input.scalar_type(), "upsample_bicubic2d_out_frame", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto idata = input.packed_accessor64<scalar_t, 4>();
auto odata = output.packed_accessor64<scalar_t, 4>();
// Get scaling factors
const accscalar_t rheight = area_pixel_compute_scale<accscalar_t>(
input_height, output_height, align_corners, scales_h);
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
upsample_bicubic2d_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_output_elements, max_threads),
max_threads,
0,
stream>>>(
num_output_elements,
rheight,
rwidth,
align_corners,
idata,
odata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
static void upsample_bicubic2d_backward_out_cuda_template(
const Tensor& grad_input,
const Tensor& grad_output_,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w) {
TensorArg grad_input_arg{grad_input, "grad_input", 1},
grad_output_arg{grad_output_, "grad_output_", 2};
checkAllSameGPU(__func__, {grad_output_arg, grad_input_arg});
int output_height = output_size[0];
int output_width = output_size[1];
int input_height = input_size[2];
int input_width = input_size[3];
Tensor grad_output = grad_output_.contiguous();
grad_input.zero_();
const int num_kernels = output_height * output_width;
const int num_threads = std::min(
at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock, 1024);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(), "upsample_bicubic2d_backward_out_frame", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
auto idata = grad_input.packed_accessor64<scalar_t, 4>();
auto odata = grad_output.packed_accessor64<scalar_t, 4>();
const accscalar_t rheight = area_pixel_compute_scale<accscalar_t>(
input_height, output_height, align_corners, scales_h);
const accscalar_t rwidth = area_pixel_compute_scale<accscalar_t>(
input_width, output_width, align_corners, scales_w);
upsample_bicubic2d_backward_out_frame<scalar_t, accscalar_t>
<<<ceil_div(num_kernels, num_threads),
num_threads,
0,
stream>>>(
num_kernels, rheight, rwidth, align_corners, idata, odata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
} // namespace
TORCH_IMPL_FUNC(upsample_bicubic2d_out_cuda) (
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& output) {
upsample_bicubic2d_out_cuda_template(output, input, output_size, align_corners, scales_h, scales_w);
}
TORCH_IMPL_FUNC(upsample_bicubic2d_backward_out_cuda) (
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales_h,
c10::optional<double> scales_w,
const Tensor& grad_input) {
// See Note [Writing Nondeterministic Operations]
// Nondeterministic because of atomicAdd usage
globalContext().alertNotDeterministic("upsample_bicubic2d_backward_out_cuda");
upsample_bicubic2d_backward_out_cuda_template(
grad_input, grad_output, output_size, input_size, align_corners, scales_h, scales_w);
}
} // namespace native
} // namespace at