blob: 1bc646be454356ae23f51cf552f64cb404a36bd9 [file] [log] [blame]
import collections
import contextlib
import copy
import cProfile
import dataclasses
import datetime
import dis
import functools
import gc
import inspect
import itertools
import logging
import logging.config
import math
import operator
import os
import pstats
import re
import sys
import time
import types
import weakref
from contextlib import contextmanager
from functools import lru_cache
from typing import Any, Dict
import numpy as np
import sympy
import torch
from torch import fx
from torch.nn.modules.lazy import LazyModuleMixin
from . import config, logging as torchdynamo_logging
counters = collections.defaultdict(collections.Counter)
troubleshooting_url = (
"https://github.com/pytorch/torchdynamo/blob/main/TROUBLESHOOTING.md"
)
log = logging.getLogger(__name__)
# profiling compilation time
compilation_metrics = collections.OrderedDict()
timer_counter = itertools.count()
def tabulate(rows, headers):
try:
import tabulate
return tabulate.tabulate(rows, headers=headers)
except ImportError:
return "\n".join(
", ".join(map(str, row)) for row in itertools.chain([headers], rows)
)
def dynamo_profiled(func):
def profile_wrapper(*args, **kwargs):
global timer_counter
datafn = (
func.__name__ + f"{next(timer_counter)}.profile"
) # Name the data file sensibly
prof = cProfile.Profile()
prof.enable()
retval = prof.runcall(func, *args, **kwargs)
prof.disable()
print(f"### Cprofile for {func.__name__} iter {next(timer_counter)} ###")
ps = pstats.Stats(prof)
ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
prof.dump_stats(datafn)
return retval
return profile_wrapper
def dynamo_timed(func):
def time_wrapper(*args, **kwargs):
key = func.__qualname__
if key not in compilation_metrics:
compilation_metrics[key] = []
t0 = time.time()
r = func(*args, **kwargs)
compilation_metrics[key].append(time.time() - t0)
return r
return time_wrapper
def compile_times(repr="str", aggregate=False):
"""
Get metrics about torchdynamo frontend/backend compilation times.
Accumulates information from functions tagged with `@dynamo_timed`.
repr='str' returns a printable string for user interaction, and 'csv'
returns headers, rows which can be logged for output
aggregate causes values from multiple compilations (e.g. split graphs)
to be accumulated into one value. If false, expect more than one value
per metric.
"""
def fmt_fn(values, item_fn=lambda x: x):
if aggregate:
return item_fn(sum(values))
return ", ".join(map(item_fn, values))
if repr == "str":
rows = [
(k, fmt_fn(compilation_metrics[k], item_fn=lambda x: f"{x:.4f}"))
for k in compilation_metrics
]
out = "TorchDynamo compilation metrics:\n"
out += tabulate(rows, headers=("Function", "Runtimes (s)"))
return out
elif repr == "csv":
values = [
fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
for v in compilation_metrics.values()
]
headers = list(compilation_metrics.keys())
return headers, values
tensortype_to_dtype = {
torch.FloatTensor: (torch.float32, torch.float),
torch.DoubleTensor: (torch.float64, torch.double),
torch.HalfTensor: (torch.float16, torch.half),
torch.BFloat16Tensor: (torch.bfloat16,),
torch.ByteTensor: (torch.uint8,),
torch.CharTensor: (torch.int8,),
torch.LongTensor: (torch.int64, torch.long),
torch.IntTensor: (torch.int32, torch.int),
torch.ShortTensor: (torch.int16, torch.short),
torch.BoolTensor: (torch.bool,),
}
class DuplicateWarningChecker(object):
def __init__(self, maxsize=4096):
self.maxsize = maxsize
self.reset()
def reset(self):
self.set = collections.OrderedDict()
def add(self, key):
if key in self.set:
self.set.move_to_end(key, last=True)
if not config.verbose:
return False
else:
self.set[key] = None
while len(self.set) > self.maxsize:
self.set.popitem(last=False)
return True
graph_break_dup_warning_checker = DuplicateWarningChecker()
def init_logging():
torchdynamo_logging.init_logging(
config.log_level, log_file_name=config.log_file_name
)
graph_break_dup_warning_checker.reset()
# filter out all frames after entering dynamo
def filter_stack(stack):
user_stack = []
for frame in stack:
if "convert_frame" in frame.filename:
break
if (
"eval_frame" in frame.filename
or f"{config.dynamo_import}.optimize(" in frame.line
):
continue
user_stack.append(frame)
return user_stack
def format_graph_tabular(graph):
node_specs = [[n.op, n.name, n.target, n.args, n.kwargs] for n in graph.nodes]
return tabulate(node_specs, headers=["opcode", "name", "target", "args", "kwargs"])
def format_bytecode(prefix, name, filename, line_no, code):
return f"{prefix} {name} {filename}\
line {line_no} \n{dis.Bytecode(code).dis()}\n "
def gen_record_file_name(exc, code):
return f"{get_debug_dir()}/error_recordings/\
{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"
def write_record_to_file(filename, exec_record):
try:
if os.path.exists(filename):
log.warning(
f"Unable to write execution record {filename}; file already exists."
)
else:
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "wb") as f:
exec_record.dump(f)
except Exception:
log.error(f"Unable to write execution record {filename}", exc_info=1)
def count_calls(g: fx.Graph):
c = 0
for n in g.nodes:
if "call" in n.op:
c += 1
return c
def identity(x):
return x
def nothing(*args, **kwargs):
pass
class ExactWeakKeyDictionary:
"""Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""
def __init__(self):
self.values = dict()
self.refs = dict()
def __getitem__(self, key):
return self.values[id(key)]
def get(self, key, default=None):
return self.values.get(id(key), default)
def __contains__(self, key):
return id(key) in self.values
def __setitem__(self, key, value):
idx = id(key)
if idx not in self.refs:
self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
self.values[idx] = value
def _remove_id(self, idx):
if idx in self.values:
del self.values[idx]
if idx in self.refs:
del self.refs[idx]
def clear(self):
self.refs.clear()
self.values.clear()
def istype(obj, allowed_types):
"""isinstance() without subclasses"""
if isinstance(allowed_types, (tuple, list, set)):
return type(obj) in allowed_types
return type(obj) is allowed_types
def is_numpy_int_type(value):
return istype(
value,
(
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
),
)
def is_numpy_float_type(value):
return istype(
value,
(
np.float16,
np.float32,
np.float64,
),
)
def istensor(obj):
"""Check of obj is a tensor"""
tensor_list = (
torch.Tensor,
torch.nn.Parameter,
*config.traceable_tensor_subclasses,
)
if fake_tensors_available:
tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
return istype(obj, tensor_list)
def is_lazy_module(mod):
return isinstance(mod, LazyModuleMixin)
@functools.lru_cache(4096)
def print_once(*args):
print(*args)
def make_cell(val=None):
"""Some black magic to create a cell object that usually only exists in a closure"""
x = val
def f():
return x
assert len(f.__closure__) == 1
return f.__closure__[0]
def proxy_args_kwargs(args, kwargs):
try:
proxy_args = tuple(arg.as_proxy() for arg in args)
proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
return proxy_args, proxy_kwargs
except NotImplementedError:
from .exc import unimplemented
from .variables.base import typestr
raise unimplemented(
f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
)
@dataclasses.dataclass
class CleanupHook:
"""Remove a global variable when hook is called"""
scope: Dict[str, Any]
name: str
def __call__(self, *args):
CleanupManager.count -= 1
del self.scope[self.name]
@staticmethod
def create(scope, name, val):
assert name not in scope
CleanupManager.count += 1
scope[name] = val
return CleanupHook(scope, name)
class CleanupManager(ExactWeakKeyDictionary):
count = 0
def _remove_id(self, idx):
for hook in self.values[idx]:
hook()
super()._remove_id(idx)
CleanupManager.instance = CleanupManager()
def clone_tensor(x):
"""Clone the tensor and its gradient"""
y = x.clone().requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
y.grad = x.grad.clone()
return y
def clone_input(x):
"""copy while preserving strides"""
with torch.no_grad():
needed_size = sum(
(shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
)
if x.is_quantized:
result = torch.empty_quantized((needed_size + 32,), x)
else:
result = torch.empty(needed_size + 32, dtype=x.dtype, device=x.device)
cache_line_offset = (
(x.data_ptr() - result.data_ptr()) % 32
) // x.element_size()
result.as_strided_(x.size(), x.stride(), cache_line_offset)
try:
result.copy_(x.clone())
if x.is_leaf:
result.requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
result.grad = clone_input(x.grad)
except RuntimeError:
# RuntimeError: unsupported operation: more than one element of the written-to
# tensor refers to a single memory location. Please clone() the tensor before
# performing the operation.
y = torch.clone(x)
if x.is_leaf:
y.requires_grad_(x.requires_grad)
if x.is_leaf and x.grad is not None:
y.grad = clone_input(x.grad)
return y
return result
def clone_inputs(example_inputs):
if isinstance(example_inputs, dict):
res = dict(example_inputs)
for key, value in res.items():
assert isinstance(value, torch.Tensor)
res[key] = clone_input(value)
return res
res = list(example_inputs)
for i in range(len(res)):
if isinstance(res[i], torch.Tensor):
res[i] = clone_input(res[i])
return res
@contextmanager
def preserve_rng_state():
rng = torch.clone(torch.random.get_rng_state())
if torch.cuda.is_available():
cuda_rng = torch.clone(torch.cuda.get_rng_state())
try:
yield
finally:
torch.random.set_rng_state(rng)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng)
def is_jit_model(model0):
return isinstance(
model0,
(
torch.jit._trace.TopLevelTracedModule,
torch.jit._script.RecursiveScriptModule,
torch.jit.ScriptFunction,
torch.jit.ScriptModule,
),
)
def torchscript(model, example_inputs, verbose=False):
if is_jit_model(model):
# already done?
return model
try:
return torch.jit.trace(model, example_inputs)
except Exception:
try:
return torch.jit.script(model)
except Exception:
if verbose:
log.exception("jit error")
else:
log.error("Both torch.jit.trace and torch.jit.script failed")
return None
def getfile(obj):
try:
return inspect.getfile(obj)
except TypeError:
return None
def is_namedtuple(obj):
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
return is_namedtuple_cls(type(obj))
def is_namedtuple_cls(cls):
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
try:
if issubclass(cls, tuple):
bases = getattr(cls, "__bases__", []) or [None]
module = getattr(cls, "__module__", None)
return module == "torch.return_types" or (
bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields")
)
except TypeError:
pass
return False
@functools.lru_cache(1)
def namedtuple_fields(cls):
"""Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
if cls is slice:
return ["start", "stop", "step"]
assert issubclass(cls, tuple)
if hasattr(cls, "_fields"):
# normal namedtuples
return cls._fields
@dataclasses.dataclass
class Marker:
index: int
# frustrating ones e.g. torch.return_types.max
assert cls.__module__ == "torch.return_types"
obj = cls(map(Marker, range(cls.n_fields)))
fields = [None] * cls.n_fields
for name in dir(obj):
if name[0] != "_" and isinstance(getattr(obj, name), Marker):
fields[getattr(obj, name).index] = name
return fields
def checkpoint_params(gm):
with torch.no_grad():
rng_state = torch.clone(torch.random.get_rng_state())
if torch.cuda.is_available():
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
saved_state = []
for param in itertools.chain(gm.parameters(), gm.buffers()):
saved_state.append((param, param._version, torch.clone(param)))
def restore():
with torch.no_grad():
torch.random.set_rng_state(rng_state)
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
for param, version, original_value in saved_state:
if param._version != version:
param.copy_(original_value)
return restore
def timed(model, example_inputs, times=1):
if torch.cuda.is_available():
synchronize = torch.cuda.synchronize
else:
synchronize = nothing
synchronize()
gc.collect()
torch.manual_seed(1337)
t0 = time.perf_counter()
for _ in range(times):
result = model(*example_inputs)
synchronize()
t1 = time.perf_counter()
return result, t1 - t0
def check_is_cuda(gm, example_inputs):
return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))
@lru_cache(32)
def rot_n_helper(n):
assert n > 1
vars = [f"v{i}" for i in range(n)]
rotated = reversed(vars[-1:] + vars[:-1])
fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
fn.__name__ = f"rot_{n}_helper"
return fn
def is_safe_constant(v):
if istype(v, (tuple, frozenset)):
return all(map(is_safe_constant, v))
return istype(
v, (types.CodeType, int, float, bool, str, bytes, type(None), slice, type(type))
)
def check_constant_args(args, kwargs):
return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))
def check_unspec_python_args(args, kwargs):
from .variables.constant import ConstantVariable
from .variables.tensor import UnspecializedPythonVariable
unspec_count = 0
for x in itertools.chain(args, kwargs.values()):
if isinstance(x, UnspecializedPythonVariable):
unspec_count += 1
elif not isinstance(x, (UnspecializedPythonVariable, ConstantVariable)):
return False
else:
pass
return unspec_count > 0
def specialize_args_kwargs(tx, args, kwargs):
specialized_args = []
specialized_kwargs = {}
for x in args:
specialized_args.append(x.as_specialized(tx))
for k, v in kwargs.items():
specialized_kwargs.update({k: v.as_specialized(tx)})
return specialized_args, specialized_kwargs
dict_values = type(dict().values())
odict_values = type(collections.OrderedDict().values())
tuple_iterator = type(iter(tuple()))
tuple_iterator_len = tuple_iterator.__length_hint__
object_new = object.__new__
def product(it):
return functools.reduce(operator.mul, it, 1)
def tuple_iterator_getitem(it, index):
_, (obj,), start = it.__reduce__()
return obj[start + index]
def dict_param_key_ids(value):
return set([id(k) for k in value.keys() if isinstance(k, torch.nn.Parameter)])
def dict_const_keys(value):
return set(k for k in value.keys() if not isinstance(k, torch.nn.Parameter))
def global_key_name(key):
return f"__dict_key_{id(key)}"
def rename_implicit(v):
"""
Usage of inline comprehensions generates a implicit ".0" variable that
trips up guard generation. This renames these variables in guards.
"""
m = re.match(r"^[.](\d+)$", v)
if m:
assert v == ".0", f"currently only .0 supported: {v}"
# to support .1 etc see guards.py and _eval_frame.c
return f"___implicit{m.group(1)}"
return v
# FakeTensors were introduced after pytorch 1.12, so gate their use
# to allow pytorch 1.12 to work
fake_tensors_available = True
try:
from torch._subclasses import ( # noqa: F401
FakeTensorMode,
UnsupportedFakeTensorException,
)
def make_fake_tensor(e, fake_mode, tx=None):
fake_tensor = fake_mode.from_tensor(
e, static_shapes=config.dynamic_shapes is False
)
if tx is not None:
from torch._dynamo.guards import TensorReference
def _record(tensor_ref):
if tensor_ref.ref_id not in tx.output.tensor_id_to_sym_shape_ref:
tx.output.tensor_id_to_sym_shape_ref[tensor_ref.ref_id] = set()
tx.output.tensor_id_to_sym_shape_ref[tensor_ref.ref_id].add(tensor_ref)
def _extract(symbol):
if isinstance(symbol, int):
return None
sym_expr = symbol.get_pyobj().expr
if not isinstance(sym_expr, sympy.Symbol):
return None
return sym_expr
def _record_ref(e, index, symbol, kind):
sym_expr = _extract(symbol)
if sym_expr:
tensor_ref = TensorReference(id(e), kind, index, sym_expr)
_record(tensor_ref)
for index, symbol in enumerate(fake_tensor.size()):
_record_ref(e, index, symbol, "size")
for index, symbol in enumerate(fake_tensor.stride()):
_record_ref(e, index, symbol, "stride")
offset = fake_tensor.storage_offset()
_record_ref(e, None, offset, "storage_offset")
return fake_tensor
def wrap_fake_exception(fn):
try:
return fn()
except UnsupportedFakeTensorException as e:
from .exc import unimplemented
msg = f"Unsupported: {e.reason} with fake tensor propagation. Run with config.fake_tensor_propagation=False"
log.warning(msg)
raise unimplemented(msg)
def wrap_to_fake_tensor(e, fake_mode):
if type(e) in (torch.Tensor, torch.nn.Parameter):
return wrap_fake_exception(lambda: make_fake_tensor(e, fake_mode))
else:
return e
def wrap_to_fake_tensor_and_record(e, tx):
if type(e) in (torch.Tensor, torch.nn.Parameter):
return wrap_fake_exception(lambda: make_fake_tensor(e, tx.fake_mode, tx))
else:
return e
def deepcopy_to_fake_tensor(obj, fake_mode):
with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
return wrap_fake_exception(lambda: copy.deepcopy(obj))
except ImportError:
fake_tensors_available = False
def rmse(ref, res):
"""
Calculate root mean squared error
"""
return torch.sqrt(torch.mean(torch.square(ref - res)))
def same(
ref,
res,
fp64_ref=None,
cos_similarity=False,
tol=1e-4,
equal_nan=False,
exact_dtype=True,
):
"""Check correctness to see if ref and res match"""
if fp64_ref is None:
fp64_ref = ref
if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
assert isinstance(res, (list, tuple)), f"type mismatch {type(ref)} {type(res)}"
return len(ref) == len(res) and all(
same(ai, bi, fp64_refi, cos_similarity, tol, equal_nan, exact_dtype)
for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
)
elif isinstance(ref, dict):
assert isinstance(res, dict)
assert set(ref.keys()) == set(
res.keys()
), f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
for k in ref.keys():
if not (
same(
ref[k],
res[k],
fp64_ref[k],
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
)
):
log.error(f"Accuracy failed for key name {k}")
return False
return True
elif isinstance(ref, torch.Tensor):
if ref.is_sparse:
assert res.is_sparse
ref = ref.to_dense()
res = res.to_dense()
assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
if exact_dtype:
assert ref.dtype == res.dtype, f"dtype mismatch {ref.dtype}, {res.dtype}"
if ref.dtype == torch.bool:
# triton stores bool as int8, so add this for more accurate checking
return torch.allclose(
ref.to(dtype=torch.uint8),
res.to(dtype=torch.uint8),
atol=tol,
rtol=tol,
equal_nan=equal_nan,
)
if cos_similarity:
ref = ref.flatten().to(torch.float32)
res = res.flatten().to(torch.float32)
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
# early exit that handles zero/nan better
# cosine_similarity(zeros(10), zeros(10), dim=0) is 0
return True
res = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
if res < 0.99:
log.warning(f"Similarity score={res.cpu().detach().item()}")
return res >= 0.99
else:
if not exact_dtype:
ref = ref.to(res.dtype)
# First try usual allclose
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
return True
# Check error from fp64 version
if fp64_ref.dtype == torch.float64:
ref_error = rmse(fp64_ref, ref).item()
res_error = rmse(fp64_ref, res).item()
multiplier = 2.0
if fp64_ref.numel() < 1000 or (
ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1
):
# In the presence of noise, noise might dominate our error
# metric for smaller tensors.
# Similary, for 1x1 kenerls, there seems to be high noise with amp.
multiplier = 3.0
passes_test = res_error <= (multiplier * ref_error + 1e-4)
if not passes_test:
log.error(
f"RMSE (res-fp64): {res_error:.5f}, (ref-fp64): {ref_error:.5f} and shape={res.size()}"
)
# import pdb; pdb.set_trace()
return passes_test
return False
elif isinstance(ref, (str, int, type(None), bool, torch.device)):
return ref == res
elif isinstance(ref, float):
return math.isclose(ref, res, rel_tol=tol, abs_tol=tol)
elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
return (type(ref) is type(res)) and (ref == res)
elif type(ref).__name__ in (
"MaskedLMOutput",
"Seq2SeqLMOutput",
"CausalLMOutputWithCrossAttentions",
"LongformerMaskedLMOutput",
"Instances",
"SquashedNormal",
"Boxes",
"Normal",
"TanhTransform",
"Foo",
"Variable",
):
assert type(ref) is type(res)
return all(
same(
getattr(ref, key),
getattr(res, key),
getattr(fp64_ref, key),
cos_similarity=cos_similarity,
tol=tol,
equal_nan=equal_nan,
exact_dtype=exact_dtype,
)
for key in ref.__dict__.keys()
)
else:
raise RuntimeError(f"unsupported type: {type(ref).__name__}")
def format_func_info(code):
short_filename = code.co_filename.split("/")[-1]
return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"
@contextlib.contextmanager
def disable_cache_limit():
prior = config.cache_size_limit
config.cache_size_limit = sys.maxsize
try:
yield
finally:
pass
config.cache_size_limit = prior
# map from transformed code back to original user code
orig_code_map = ExactWeakKeyDictionary()
# keep a record of code_obj -> list of guard failure reasons for logging
guard_failures = collections.defaultdict(list)
class CompileProfiler:
"""Utility for profiling how and what dynamo would compile.
Can be used for
* diagnosing recompilation issues
* determining an appropriate compile cache limit
* (TODO)confirming which functions got compiled/skipped
"""
def __init__(self):
self.frame_count = 0
self.op_count = 0
self.backend_ctx_ctor = lambda: disable_cache_limit()
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
self.frame_count += 1
for node in gm.graph.nodes:
if "call" in node.op:
self.op_count += 1
return gm.forward
def get_metrics(self):
return {"guard_failures": guard_failures}
def report(self):
metrics = self.get_metrics()
gf = metrics["guard_failures"]
def num_recompiles(code):
return len(gf[code])
def recompile_reasons(code):
return "\n".join([str(x) for x in gf[code]])
summarized_gf = [
[format_func_info(code), num_recompiles(code), recompile_reasons(code)]
for code in gf
]
rpt = "Torchdynamo Profiler Report\n"
if "graph_break" in counters:
rpt += "\n"
rpt += "The following conditions caused torchdynamo to break out of tracing and fall back to python.\n"
rpt += (
f"You may gain additional insight by passing `nopython=True` to {config.dynamo_import}.optimize, "
"to break on the first condition.\n"
)
graph_breaks = counters["graph_break"]
rpt += tabulate(
[[msg, graph_breaks[msg]] for msg in graph_breaks],
headers=["Graph Break Reason", "Count"],
)
if len(gf):
max_recompiles = max([num_recompiles(code) for code in gf])
rpt += "\n"
rpt += (
"These subgraphs were recompiled more than once due to guard failures."
)
rpt += (
"Guard failures indicate some condition assumed to be static by the tracer changed, "
"making it unsafe to reuse the compiled program."
)
rpt += tabulate(
summarized_gf,
headers=["Function", "Num Recompiles", "Recompile Reasons"],
)
rpt += "\n"
rpt += (
f"Set {config.dynamo_import}.config.cache_size_limit to "
f"{max_recompiles} to avoid being cache limited.\n"
)
else:
rpt += "No cache-limited recompilations detected.\n"
return rpt
class DebugDir:
def __init__(self):
self.num_setup_calls = 0
self.debug_path = None
def setup(self):
assert self.num_setup_calls >= 0
if self.num_setup_calls == 0:
debug_root = config.debug_dir_root
dir_name = "run_" + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
self.debug_path = os.path.join(debug_root, dir_name)
self.num_setup_calls += 1
def clear(self):
assert self.num_setup_calls >= 0
if self.num_setup_calls == 1:
self.debug_path = None
self.num_setup_calls -= 1
assert self.num_setup_calls >= 0
def get(self):
assert self.debug_path is not None
return self.debug_path
debug_dir = DebugDir()
def get_debug_dir():
return debug_dir.get()