blob: c697c8c6b67e552f54366f905ba90cdde55764b1 [file] [log] [blame]
# Owner(s): ["module: ProxyTensor"]
from torch.testing._internal.common_utils import TestCase, run_tests, IS_WINDOWS
import torch
import unittest
import warnings
import torch.nn.utils._stateless as stateless
import operator
from collections.abc import Iterable
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_methods_invocations import DecorateInfo
from torch.testing._internal.common_methods_invocations import op_db, wrapper_set_seed
from torch._subclasses.fake_tensor import DynamicOutputShapeException
from torch._decomp import decomposition_table
from torch.testing._internal.common_device_type import ops
from torch._C import _disabled_torch_function_impl
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule, has_proxy
from torch.utils._pytree import tree_map
from torch import nn
import re
import types
import functools
import itertools
aten = torch.ops.aten
try:
import sympy # noqa: F401
# TODO(jansel): these tests fail on windows
HAS_SYMPY = not IS_WINDOWS
except ImportError:
HAS_SYMPY = False
skipIfNoSympy = unittest.skipIf(not HAS_SYMPY, "no sympy")
HAS_CUDA = torch.cuda.is_available()
def process_failures():
"""
Takes file containing failures like
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
and processes them into a list of opinfo xfails
"""
f = open('pytest_failures')
failures = f.readlines()
failures = [i.strip() for i in failures]
def process_failure_string(s, matcher):
out = re.search(matcher, s)
return out.groups()
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
def create_normalized_name(op):
if op.variant_test_name == '':
s = op.name
else:
s = f"{op.name}.{op.variant_test_name}"
return s.replace('.', '_')
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
print("symbolic_tensor_failures = {")
for failure, reason in failures:
print(f" xfail{remap_opinfo[failure]}, # {reason}")
print("}")
def copy_func(f):
"""Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)"""
g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
argdefs=f.__defaults__,
closure=f.__closure__)
g = functools.update_wrapper(g, f)
g.__kwdefaults__ = f.__kwdefaults__
return g
# Copied from functorch
def xfail(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, True)
def skip(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, False)
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db
for xfail in to_skip:
op_name, variant_name, device_type, dtypes, expected_failure = xfail
matching_opinfos = [o for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name]
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
for opinfo in matching_opinfos:
decorators = list(opinfo.decorators)
if expected_failure:
decorator = DecorateInfo(unittest.expectedFailure,
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
else:
decorator = DecorateInfo(unittest.skip("Skipped!"),
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except ImportError:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning)
def _create_new_input(x):
if not isinstance(x, torch.Tensor):
return x
if x.dtype != torch.float:
return x + 1
if x.is_leaf:
return torch.rand_like(x, requires_grad=x.requires_grad)
else:
return torch.rand_like(x)
"""
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
"""
class UnwrapTensor(torch.Tensor):
@staticmethod
def __new__(cls, tensor: torch.Tensor):
r = torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
dtype=tensor.dtype,
device=tensor.device,
layout=tensor.layout,
requires_grad=tensor.requires_grad,
)
r._tensor = tensor
return r
def __repr__(self):
# TODO: consider all_gather the local tensors for better debugging
return f"UnwrapTensor({self._tensor})"
__torch_function__ = _disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
ret = e
if isinstance(e, UnwrapTensor):
ret = e._tensor.cos()
return ret
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
return func(*args, **kwargs)
class TestGenericProxyTensor(TestCase):
# WARNING: if any of your inputs are index tensors, DO NOT use this
# function
def _test(self, f, inps):
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
new_inps = tree_map(_create_new_input, inps)
r1 = fx_f(*new_inps)
r2 = f(*new_inps)
self.assertEqual(r1, r2)
def test_make_fx_simple(self):
def f(x):
return torch.sin(x)
self._test(f, (torch.randn(3),))
def test_scalar_device(self, device='cpu'):
def f(a, b):
return a + b
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
def test_isolated_graphmodule(self):
def is_any_sum(gm):
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
def is_any_digamma(gm):
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
def is_any_sigmoid(gm):
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
def inner(x):
return torch.sum(x)
def f(x):
gm = get_isolated_graphmodule(inner, (x,), {})
self.assertTrue(is_any_sum(gm))
return x + torch.randn(x.shape)
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
# by the outer make_fx call
traced = make_fx(f)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
# When factory functions are used, they should not be traced
# by the outer make_fx call
def inner_with_factory():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((10, 10), val).sum()
def f1(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2(x):
gm = get_isolated_graphmodule(f1, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify nested make_fx calls don't make factory functions to be leaked
# into the outer graph
def f2(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertTrue(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with non-ProxyTensor modes
from torch.testing._internal.logging_tensor import LoggingTensorMode
def f1_logging(x):
with LoggingTensorMode():
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging(x):
with LoggingTensorMode(), LoggingTensorMode():
gm = get_isolated_graphmodule(f1_logging, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with another tensor subclass
# This case currently doesn't work and should raise an error
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
from torch.testing._internal.logging_tensor import LoggingTensor
def f1_logging_tensor(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging_tensor(x):
x = LoggingTensor(x)
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging_tensor)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
self.assertTrue(is_any_digamma(traced))
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
def f(x):
y = x.new_zeros(x.size())
y.copy_(x)
return y
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
# returns a ProxyTensor.
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
self.assertExpectedInline(out.code, """\
def forward(self, x_1):
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
copy_ = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
return copy_
""")
def test_make_fx_reentrant_dispatch(self):
def f(x):
return torch.ops.aten.norm.Scalar(x, 2.0)
def norm_decomp(x, p=2.0):
if p != 2.0:
raise RuntimeError("can't handle with p != 2")
return torch.sqrt(torch.sum(torch.square(x)))
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
for n in traced.graph.nodes:
self.assertTrue("square" not in str(n.target))
self.assertTrue("norm" not in str(n.target))
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_backward_trace(self):
mod = torchvision.models.resnet18()
# An old version of this test called the module directly. This works
# for tracing_mode == "real", but for fake tensors, we also have to
# ensure that the parameters and buffers get wrapped in fake tensors
# because free fake tensors are not supported. Fortunately stateless
# does precisely this for us.
def f(x, params, buffers):
for p in params.values():
p.grad = None
loss = stateless.functional_call(mod, {**params, **buffers}, (x,)).sum()
# I could have done this with the functional API, but there is
# plenty of exercising this; I want to show mutating API still
# works
loss.backward()
return [p.grad for p in params.values()]
inp = torch.randn(3, 3, 250, 250)
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
def test_varargs(self):
def f(*args):
return sum(args)
self._test(f, [torch.randn(2), torch.randn(2)])
def test_proxy_tensor(self):
def f_grad(x):
val = x.cos().cos().sum()
return torch.autograd.grad(val, x)
def f_backward(x):
val = x.cos().cos().sum()
val.backward()
return x.grad
for f in [f_grad, f_backward]:
self._test(f, [torch.randn(3, requires_grad=True)])
def test_inplace_metadata(self):
def f(x):
x = x.clone()
x.unsqueeze_(-1)
assert x.shape[-1] == 1
return x
self._test(f, [torch.randn(5)])
def test_mode_tracing_factory_function(self):
def f(x):
return x + torch.randn(x.shape)
# default behavior should trace factory functions
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(
any(
node.target == aten.randn.default
for node in traced.graph.nodes
)
)
def test_make_fx_overloads(self):
def f(x):
return x.cos() + torch.randn(x.shape)
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(all([isinstance(node.target, torch._ops.OpOverload)
for node in traced.graph.nodes if node.op == 'call_function']))
def test_tensor_constants(self):
def f():
val = torch.tensor(float('inf'))
return torch.full((100, 100), val)
self._test(f, [])
def test_allclose(self):
def f(a, b):
return torch.allclose(a, b)
self.assertRaisesRegex(
RuntimeError, "data-dependent",
lambda: make_fx(f, tracing_mode=self.tracing_mode)(
torch.zeros(3), torch.zeros(3)
)
)
def test_constant_proxy_tensor_mut(self):
def f():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((100, 100), val)
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
# In case we mutated shared state in the g graph!
self.assertEqual(g(), f())
def test_constant_unbind(self):
def f():
val = torch.tensor([2])
r, = torch.unbind(val, 0)
return r.item()
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
def test_constant_blowup(self):
def f():
val = torch.tensor([2])
blowup = val.repeat(1000)
return blowup.sum().item()
self.assertRaisesRegex(
RuntimeError, "data-dependent",
lambda: make_fx(f, tracing_mode=self.tracing_mode)()
)
def test_constant_random(self):
def f():
val = torch.tensor([2.0])
val.normal_()
return val.item()
self.assertRaisesRegex(
RuntimeError, "data-dependent",
lambda: make_fx(f, tracing_mode=self.tracing_mode)()
)
def test_decomposition_interpreter(self):
def fn(x):
return torch.nn.functional.silu(x)
x = torch.rand((4, 4))
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
found_silu = False
for n in fx_module.graph.nodes:
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
found_silu = True
self.assertTrue(found_silu)
new_graph = torch.fx.Graph()
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
DecompositionInterpreter(
fx_module,
new_graph=new_graph,
decomposition_table=silu_decomp_table,
).run(x)
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
for n in decomposed_module.graph.nodes:
self.assertTrue(n.target != torch.ops.aten.silu)
self.assertTrue(n.target != torch.ops.aten.silu.default)
self.assertEqual(fx_module(x), decomposed_module(x))
def test_make_fx_model_fwd_bwd(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(x, params):
out = stateless.functional_call(model, params, x).sum()
out.backward()
return list(params.values())
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
# fx may change the order of parameters in list, so using set() to compare
self.assertTrue(
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
)
self.assertTrue(
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
)
def test_make_fx_model_double_param(self):
class Emformer(torch.nn.Module):
def __init__(
self,
input_dim: int = 256,
) -> None:
super().__init__()
self.layer_norm = torch.nn.LayerNorm(input_dim)
def forward(mod_self, x): # noqa: B902
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
y = mod_self.layer_norm(x)
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
z = mod_self.layer_norm(y)
return z
gm = make_fx(Emformer())(torch.randn(16, 1, 256))
ops = set([n.target for n in gm.graph.nodes if n.op == 'call_function'])
self.assertEqual(len(ops), 2)
def test_make_fx_model_fwd_bwd_wgtupdate(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(args, params, buffers):
for p in params.values():
p.grad = None
if not isinstance(args, Iterable):
args = [args]
params_and_buffers = {**params, **buffers}
out = stateless.functional_call(model, params_and_buffers, args)
out.sum().backward()
return [p - 1e-4 * p.grad for p in params.values()]
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
buffers = dict(model.named_buffers())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
# fx may change the order of parameters in list, so using set() to compare
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
)
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
)
def test_trace_subclasses(self):
def f1(x):
x = UnwrapTensor(x)
y = x * 2
return y
def f2(x):
wrapped = UnwrapTensor(x)
y = x * wrapped
return y
inp = [torch.randn(5)]
self._test(f1, inp)
self._test(f2, inp)
def test_partial_decomp(self):
def f(a, b, c):
x = torch.addmm(a, b, c)
y = torch.addmm(a, b, c, beta=2, alpha=1)
return x + y
inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
fx_g = make_fx(f)(*inps)
def addmm(a, b, c, beta=1, alpha=1):
if beta == 1 and alpha == 1:
return NotImplemented
return beta * a + alpha * (b @ c)
decomposed_fx = make_fx(f, {aten.addmm.default: addmm})(*inps)
self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)
def test_decomp_of_capture(self):
val = torch.randn(5)
def f(x):
return x.t() + val.t()
def nop(x):
return x.cos()
traced = make_fx(f, decomposition_table={torch.ops.aten.t.default: nop})(torch.randn(5))
self.assertEqual(len([n for n in traced.graph.nodes if n.target == torch.ops.aten.t.default]), 0)
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
def test_amp_cache(self):
layer = torch.nn.Conv2d(3, 3, 3).cuda()
def f(x, w):
return torch.nn.functional.conv2d(x, w, stride=layer.stride)
inp = torch.randn(4, 3, 10, 10, device='cuda')
with torch.autocast('cuda'):
out_graph = make_fx(f)(inp, layer.weight).graph
out_graph2 = make_fx(f)(inp, layer.weight).graph
self.assertEqual(len(out_graph.nodes), len(out_graph2.nodes))
for a, b in zip(out_graph.nodes, out_graph2.nodes):
self.assertEqual(a.op, b.op)
def test_has_proxy(self):
foo = torch.randn(5)
def f(x):
self.assertFalse(has_proxy(foo))
self.assertTrue(has_proxy(x))
y = x.cos()
self.assertTrue(has_proxy(y))
return y
self.assertFalse(has_proxy(torch.randn(5)))
make_fx(f)(torch.randn(5))
def test_strides(self):
def f(x):
self.assertTrue(x.is_contiguous())
self.assertFalse(x.is_contiguous(memory_format=torch.channels_last))
x = x.permute(0, 3, 1, 2)
self.assertFalse(x.is_contiguous())
self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
return x
make_fx(f)(torch.randn(2, 3, 4, 5))
def f(x):
self.assertTrue(x.is_contiguous())
y = x[:, 1]
self.assertFalse(y.is_contiguous())
y = x[:, ::2]
self.assertFalse(y.is_contiguous())
return x.cos()
make_fx(f)(torch.randn(2, 3, 4, 5))
def test_pr_86917(self):
# Tests the issue brought up here https://github.com/pytorch/pytorch/pull/86917#issuecomment-1283155344
def f(a, b):
return torch.ops.aten.nll_loss_forward(a, b, None, 1, 10)
self._test(f, [torch.randn(1, 10), torch.zeros(1, dtype=torch.long)])
class TestGenericProxyTensorReal(TestGenericProxyTensor):
tracing_mode = "real"
class TestGenericProxyTensorFake(TestGenericProxyTensor):
tracing_mode = "fake"
def xfail_inherited_tests(tests):
"""
Given a list of test names which are defined by a superclass of the
class this decorates, mark them as expected failure. This is useful
if you are doing poor man's parameterized tests by subclassing a generic
test class.
"""
def deco(cls):
for t in tests:
# NB: expectedFailure operates by mutating the method in question,
# which is why you have to copy the function first
setattr(cls, t, unittest.expectedFailure(copy_func(getattr(cls, t))))
return cls
return deco
@skipIfNoSympy
@xfail_inherited_tests([
"test_inplace_metadata",
"test_mode_tracing_factory_function",
"test_make_fx_overloads",
"test_resnet18_backward_trace",
"test_trace_subclasses",
])
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
tracing_mode = "symbolic"
del TestGenericProxyTensor
class TestRealProxyTensor(TestCase):
pass
class TestFakeProxyTensor(TestCase):
def test_issue82547(self):
x = nn.Parameter(torch.randn(3, 3))
def f():
return torch.ops.aten.t.default(x)
self.assertRaisesRegex(Exception, "non-Fake Tensor", lambda: make_fx(f, tracing_mode="fake")())
class A(torch.Tensor):
pass
x = A(torch.randn(3, 3))
self.assertRaisesRegex(TypeError, "no implementation found", lambda: make_fx(f, tracing_mode="fake")())
def test_use_fake_and_tensor(self):
def f(x, y):
z = torch.tensor([2.0, 3.0])
return x + y + z
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
x, y = torch.randn(2), torch.randn(2)
self.assertEqual(g(x, y), f(x, y))
def test_alias(self):
def f(x):
return torch.ops.aten.alias(x)
r = str(make_fx(f, tracing_mode="fake")(torch.randn(2)).code).strip()
# NB: this should not have a detach call
self.assertExpectedInline(r, """\
def forward(self, x_1):
alias = torch.ops.aten.alias.default(x_1); x_1 = None
return alias""")
def test_meta(self):
def f(x):
a = x.cos()
b = torch.var_mean(a, dim=0)
c = b * 2
return c
out = make_fx(f, tracing_mode="fake")(torch.randn(5, 5))
for n in out.graph.nodes:
if n.op == 'output':
continue
self.assertTrue('val' in n.meta)
def _get_node(fx_g, cond):
for n in fx_g.graph.nodes:
if cond(n):
return n
raise AssertionError
def _get_free_symbols(shape_env):
vars = tuple(shape_env.var_to_val.keys())
return len([var for var in vars if var not in shape_env.replacements])
def _trace(f, *args):
inps = [torch.randn(arg) for arg in args]
return make_fx(f, tracing_mode="symbolic")(*inps)
# TODO: Need to test the guards themselves specifically as well
@skipIfNoSympy
class TestSymbolicTracing(TestCase):
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
"""
Tests fn traced with trace_inputs against test_inputs
Also returns shape env
"""
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
for input in test_inputs:
input = [torch.randn(shape) for shape in input]
rx, ry = traced_f(*input), fn(*input)
if assert_eq:
self.assertEqual(rx, ry)
return traced_f.shape_env
def test_unary(self):
def f(x):
assert x.shape[0] < 20
return x.cos()
test_inputs = []
test_inputs.append([(2, 5)])
test_inputs.append([(6, 8)])
shape_env = self._test_dynamic(f, [(3, 4)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(4, 5)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(25, 5)))
# TODO: There should eventually be guards for contiguity, but they're
# not currently being done yet
assert len(shape_env.guards) == 1, "\n" + shape_env.format_guards()
def test_binary_broadcast(self):
def f(a, b):
c = a * b
return c
test_inputs = []
test_inputs.append([(1, 5), (3, 1)])
test_inputs.append([(1, 4), (4, 1)])
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs)
assert len(shape_env.guards) == 0
def test_multiply_shape(self):
def f(a):
return torch.empty(a.shape[0] * 2)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size = torch.ops.aten.sym_size(a_1, 0); a_1 = None
mul = sym_size * 2; sym_size = None
empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False); mul = None
detach = torch.ops.aten.detach.default(empty); empty = None
return detach""")
def test_neg_shape(self):
def f(a):
return torch.empty(-a.shape[0] + 10)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(1)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size = torch.ops.aten.sym_size(a_1, 0); a_1 = None
neg = -sym_size; sym_size = None
add = neg + 10; neg = None
empty = torch.ops.aten.empty.memory_format([add], device = device(type='cpu'), pin_memory = False); add = None
detach = torch.ops.aten.detach.default(empty); empty = None
return detach""")
def test_sqrt_size(self):
def f(a):
return a / a.size(-1) ** 0.5
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size = torch.ops.aten.sym_size(a_1, 0)
sym_float = torch.fx.experimental.symbolic_shapes.sym_float(sym_size); sym_size = None
pow_1 = sym_float ** 0.5; sym_float = None
div = torch.ops.aten.div.Tensor(a_1, pow_1); a_1 = pow_1 = None
return div""")
def test_symint_to_tensor(self):
def f(a):
return a / a.shape[0]
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size = torch.ops.aten.sym_size(a_1, 0)
div = torch.ops.aten.div.Tensor(a_1, sym_size); a_1 = sym_size = None
return div""")
r = str(make_fx(f, tracing_mode="symbolic", decomposition_table=decomposition_table)(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
sym_size = torch.ops.aten.sym_size(a_1, 0)
sym_float = torch.fx.experimental.symbolic_shapes.sym_float(sym_size); sym_size = None
div = torch.ops.prims.div.default(a_1, sym_float); a_1 = sym_float = None
return div""")
def test_cat(self):
def f(a, b):
val = torch.mul(a, b)
out = torch.cat([val, val])
if out.shape[0] * out.shape[1] > 20:
out = out.cos()
return out
test_inputs = []
test_inputs.append([(1, 5), (6, 1)])
test_inputs.append([(1, 4), (3, 1)])
shape_env = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(1, 10), torch.randn(6, 1)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(1, 2), torch.randn(4, 1)))
assert len(shape_env.guards) == 1
def test_new_empty(self):
def f(a, b):
return a.new_empty(b.shape[0], b.shape[1] * 2)
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False)
def test_size_with_tensor(self):
def f(tensor):
max_size = torch.tensor([800, 1216], dtype=torch.int64)
batch_shape = [2] + list(tensor.shape[:-2]) + list(max_size)
return tensor.new_empty(batch_shape)
a = torch.randn(3, 800, 1199)
self.assertRaisesRegex(
RuntimeError, "data-dependent", lambda: make_fx(f, tracing_mode="symbolic")(a)
)
def test_expand(self):
def f(a):
b = torch.mul(a, a)
c = b.expand(a.shape)
return c
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
def test_symbolic_meta(self):
def f(a, b):
d = a.new_empty(a.shape[0] + b.shape[0])
return d
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5), torch.randn(4))
fx_g.graph.eliminate_dead_code()
fx_g.recompile()
meta_c = _get_node(fx_g, lambda x: x.target == aten.new_empty.default)
meta_d = _get_node(fx_g, lambda x: x.target == operator.add)
self.assertTrue(meta_c.meta['val'].shape[0].get_pyobj() == meta_d.meta['val'].expr)
def test_return_symint(self):
def f(x):
return x.shape[0], x.cos(), x.shape[0] / 5
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
def f(x):
return x.shape
self._test_dynamic(f, [(5, 3)], [[(4, 6)]])
def _assert_no_guards(self, fx_g, free_symbols):
assert _get_free_symbols(fx_g.shape_env) == free_symbols, fx_g.shape_env.var_to_val
assert len(fx_g.shape_env.get_nontrivial_guards()) == 0, fx_g.shape_env.format_guards()
def test_guards_equal(self):
def f(a, b):
return a * b
# NB: Numbers are carefully chosen to avoid duck shaping from applying
fx_g = _trace(f, (5, 6), (5, 6))
self._assert_no_guards(fx_g, 2)
fx_g = _trace(f, (5, 6, 7), (5, 6, 7))
self._assert_no_guards(fx_g, 3)
fx_g = _trace(f, (5, 1), (1, 6))
self._assert_no_guards(fx_g, 2)
def f(a, b, c, d):
a = a + b
cat = torch.cat([c, d])
return a + cat
fx_g = _trace(f, 7, 7, 4, 3)
self._assert_no_guards(fx_g, 2)
def f(a, b, c, d, e):
vals = [a, b, c, d, e]
x = a
for idx in range(len(vals) - 1):
x = torch.cat([x, vals[idx]]) + vals[idx + 1]
return x
fx_g = _trace(f, 2, 4, 8, 16, 32)
self._assert_no_guards(fx_g, 1)
def f(a, b):
a = a.view(b.shape[0])
return a + b.sum()
fx_g = _trace(f, (4, 2), 8)
self._assert_no_guards(fx_g, 2)
fx_g = _trace(f, (4, 2), (8, 5))
self._assert_no_guards(fx_g, 3)
fx_g = _trace(f, (2, 3, 4), 24)
self._assert_no_guards(fx_g, 3)
def test_nonidentity_transitive_guards(self):
def f(a, b, c, d, e):
vals = [a, b, c, d, e]
cat_vals = []
for idx in range(len(vals) - 1):
cat_vals.append(torch.cat([vals[idx], vals[idx]]))
final_vals = []
for a, b in reversed(list(zip(cat_vals, vals[1:]))):
final_vals.append(a + b)
return final_vals
fx_g = _trace(f, 2, 4, 8, 16, 32)
self._assert_no_guards(fx_g, 1)
make_fx_failures = {
# unknown
xfail('allclose'),
xfail('equal'),
# empty
skip('new_empty'),
skip('empty_like'),
skip('empty'),
# flaky
skip('linalg.lstsq', 'grad_oriented'),
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
skip('linalg.lstsq'), # flaky, probably just a precision issue
# data-dependent control flow
xfail('cov'),
xfail('istft'),
xfail('nn.functional.gaussian_nll_loss'),
xfail('tensor_split'),
xfail('corrcoef'),
xfail('quantile'),
xfail('nanquantile'),
xfail('narrow'),
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
xfail('sparse.sampled_addmm'),
# proxy tensor doesn't support sparse correctly right now
skip('to_sparse'),
# segfaults
skip('block_diag'),
}
fake_tensor_failures = {
# FakeTensor fallback doesn't work
xfail('segment_reduce', 'lengths'),
xfail('multinomial'),
xfail('cholesky'),
xfail('cholesky_inverse'),
# ASAN failures due to divide by 0
skip('nn.functional.nll_loss'),
}
symbolic_tensor_failures = {
# Needs complex-value support
xfail('polar'),
xfail('linalg.eig'),
xfail('linalg.eigvals'),
skip('masked.logsumexp', ''), # Tensors of type TensorImpl do not have numel
xfail('masked.amax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.amin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('masked.argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('masked.cumprod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.cumsum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.log_softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('masked.mean', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, ...
xfail('masked.median', ''), # aten.nanmedian.dim - couldn't find symbolic meta function/decomposition
xfail('masked.norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('masked.prod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.softmin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.std', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('masked.sum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('masked.var', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('addmv', ''), # aten.addmv.default - couldn't find symbolic meta function/decomposition
xfail('addr', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('aminmax', ''), # aten.aminmax.default - couldn't find symbolic meta function/decomposition
xfail('argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('argsort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('argwhere', ''), # aten.nonzero.default - couldn't find symbolic meta function/decomposition
xfail('baddbmm', ''), # aten.baddbmm.default - couldn't find symbolic meta function/decomposition
xfail('bernoulli', ''), # aten.bernoulli.default - couldn't find symbolic meta function/decomposition
xfail('bucketize', ''), # aten.bucketize.Tensor - couldn't find symbolic meta function/decomposition
xfail('cartesian_prod', ''), # Tensors of type TensorImpl do not have numel
xfail('cdist', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('cholesky_solve', ''), # Could not run 'aten::_cholesky_solve_helper' with arguments from the 'Meta' back...
xfail('chunk', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('column_stack', ''), # Tensors of type TensorImpl do not have numel
xfail('combinations', ''),
xfail('count_nonzero', ''), # Could not run 'aten::count_nonzero.dim_IntList' with arguments from the 'Meta' ba...
xfail('cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('cummax', ''), # aten.cummax.default - couldn't find symbolic meta function/decomposition
xfail('cummin', ''), # aten.cummin.default - couldn't find symbolic meta function/decomposition
xfail('cumprod', ''), # aten.cumprod.default - couldn't find symbolic meta function/decomposition
xfail('cumulative_trapezoid', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('deg2rad', ''), # aten.deg2rad.default - couldn't find symbolic meta function/decomposition
xfail('diagonal_scatter', ''), # aten.diagonal_scatter.default - couldn't find symbolic meta function/decomposition
xfail('diff', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('dist', ''), # aten.dist.default - couldn't find symbolic meta function/decomposition
xfail('dsplit', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('fft.fft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('unflatten', ''), # RuntimeError: Trying to call aten.size on a tensor with symbolic shapes...
xfail('frexp', ''), # aten.frexp.Tensor - couldn't find symbolic meta function/decomposition
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
xfail('gradient', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('histc', ''), # Could not run 'aten::histc' with arguments from the 'Meta' backend. This could be because...
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
xfail('hsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('i0', ''), # aten.i0.default - couldn't find symbolic meta function/decomposition
xfail('index_reduce', ''), # Float
xfail('inner', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('isclose', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('isin', ''), # aten.isin.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('kron', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
xfail('lerp', ''), # aten.lerp.Scalar - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky_ex', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cond', ''), # Tensors of type TensorImpl do not have numel
xfail('linalg.cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('linalg.det', ''), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
xfail('linalg.det', 'singular'), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigvalsh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.householder_product', ''), # aten.linalg_householder_product.default - couldn't find symbolic meta funct...
xfail('linalg.inv', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.inv_ex', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor_ex', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decompos...
xfail('linalg.ldl_solve', ''), # aten.linalg_ldl_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu', ''), # aten.linalg_lu.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor_ex', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_power'), # RuntimeError: Trying to call aten.size on a tensor with symbolic shape
xfail('linalg.matrix_norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', 'hermitian'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.multi_dot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.norm', ''), # TensorImpl do not have numel
xfail('linalg.norm', 'subgradients_at_zero'), # TensorImpl do not have numel
xfail('linalg.pinv', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'singular'), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'hermitian'), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decompo...
xfail('linalg.qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('linalg.slogdet', ''), # aten._linalg_slogdet.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_ex', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_triangular', ''), # aten.linalg_solve_triangular.default - couldn't find symbolic meta function/de...
xfail('linalg.svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.svdvals', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorinv', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorsolve', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.vander', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('logaddexp2', ''), # aten.logaddexp2.default - couldn't find symbolic meta function/decomposition
xfail('logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('logcumsumexp', ''), # aten.logcumsumexp.default - couldn't find symbolic meta function/decomposition
xfail('logdet', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('lu', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('lu_unpack', ''), # aten.lu_unpack.default - couldn't find symbolic meta function/decomposition
xfail('masked_fill', ''), # expected predicate to be bool, got torch.float32
xfail('masked_scatter', ''), # aten.masked_scatter.default - couldn't find symbolic meta function/decomposition
xfail('masked_select', ''), # aten.masked_select.default - couldn't find symbolic meta function/decomposition
xfail('matrix_exp', ''), # aten.linalg_matrix_exp.default - couldn't find symbolic meta function/decomposition
xfail('max', 'reduction_with_dim'), # aten.max.dim - couldn't find symbolic meta function/decomposition
xfail('median', ''), # Could not run 'aten::median' with arguments from the 'Meta' backend. This could be becau...
xfail('meshgrid', 'list_of_tensors'), # Tensors of type TensorImpl do not have numel
xfail('meshgrid', 'variadic_tensors'), # Tensors of type TensorImpl do not have numel
xfail('min', 'reduction_with_dim'), # aten.min.dim - couldn't find symbolic meta function/decomposition
xfail('mode', ''), # aten.mode.default - couldn't find symbolic meta function/decomposition
xfail('msort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('narrow', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_avg_pool3d', ''), # aten._adaptive_avg_pool3d.default - couldn't find symbolic meta func...
xfail('nn.functional.adaptive_max_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_max_pool2d', ''), # aten.adaptive_max_pool2d.default - couldn't find symbolic meta funct...
xfail('nn.functional.adaptive_max_pool3d', ''), # argument 'output_size' (position 2) must be tupl...
xfail('nn.functional.avg_pool3d', ''), # aten.avg_pool3d.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.bilinear', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.conv1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.conv2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.cosine_embedding_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.cosine_similarity', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.ctc_loss'), # aten._ctc_loss.Tensor - couldn't find symbolic meta function/decomposition
xfail('nn.functional.dropout2d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout3d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.embedding_bag', ''), # aten._embedding_bag_forward_only.default - couldn't find symbolic meta fun...
xfail('nn.functional.embedding', ''), # argument 'size' must be tuple of ints, but found element of type tor...
xfail('nn.functional.fractional_max_pool2d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.fractional_max_pool3d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.grid_sample', ''), # aten.grid_sampler_2d.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.group_norm', ''), # 'torch._C.SymIntNode' and 'int'
xfail('nn.functional.hinge_embedding_loss', ''), # aten.empty_like.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.interpolate', 'area'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.interpolate', 'bicubic'), # aten.upsample_bicubic2d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'bilinear'), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function...
xfail('nn.functional.interpolate', 'linear'), # aten.upsample_linear1d.vec - couldn't find symbolic meta function/dec...
xfail('nn.functional.interpolate', 'nearest'), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'trilinear'), # aten.upsample_trilinear3d.vec - couldn't find symbolic meta functi...
xfail('nn.functional.margin_ranking_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.max_pool1d', ''), # Trying to call aten.size on a tensor with symbolic shapes.
xfail('nn.functional.max_pool3d', ''), # aten.max_pool3d_with_indices.default - couldn't find symbolic meta function/d...
xfail('nn.functional.max_unpool1d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool2d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool3d', 'grad'), # aten.max_unpool3d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.multi_margin_loss', ''), # Could not run 'aten::multi_margin_loss' with arguments from the...
xfail('nn.functional.multilabel_margin_loss', ''), # Could not run 'aten::multilabel_margin_loss_forward' with ...
xfail('nn.functional.pad', 'reflect'), # aten.reflection_pad1d.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.pad', 'replicate'), # aten.replication_pad1d.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.pdist', ''), # Could not run 'aten::_pdist_forward' with arguments from the 'Meta' backend...
xfail('nn.functional.pixel_shuffle', ''), # aten.pixel_shuffle.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.pixel_unshuffle', ''), # aten.pixel_unshuffle.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.rrelu', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.smooth_l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.unfold', ''), # aten.im2col.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.upsample_bilinear', ''), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function/de...
xfail('nn.functional.upsample_nearest', ''), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/deco...
xfail('norm', 'nuc'), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('normal', ''), # aten.normal.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('normal', 'number_mean'), # aten.normal.float_Tensor - couldn't find symbolic meta function/decomposition
xfail('ormqr', ''), # aten.ormqr.default - couldn't find symbolic meta function/decomposition
xfail('outer', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('pca_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('pinverse', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_1'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_2'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_3'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_4'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('put', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('rad2deg', ''), # aten.rad2deg.default - couldn't find symbolic meta function/decomposition
xfail('renorm', ''), # aten.renorm.default - couldn't find symbolic meta function/decomposition
xfail('reshape_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('resize_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('resize_as_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('roll', ''), # Tensors of type TensorImpl do not have numel
xfail('round', ''), # aten.round.default - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_0'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_neg_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('scatter', ''), # aten.scatter.src - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amax'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amin'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'mean'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'prod'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'sum'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('searchsorted', ''), # Could not run 'aten::searchsorted.Tensor' with arguments from the 'Meta' backend. ...
xfail('segment_reduce', 'offsets'), # aten.segment_reduce.default - couldn't find symbolic meta function/decomposition
xfail('sort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('special.airy_ai', ''), # aten.special_airy_ai.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y0', ''), # aten.special_bessel_y0.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y1', ''), # aten.special_bessel_y1.default - couldn't find symbolic meta function/decomposition
xfail('special.chebyshev_polynomial_t', ''), # aten.special_chebyshev_polynomial_t.default - couldn't find symbolic me...
xfail('special.chebyshev_polynomial_u', ''), # aten.special_chebyshev_polynomial_u.default - couldn't find symbolic me...
xfail('special.hermite_polynomial_h', ''), # aten.special_hermite_polynomial_h.default - couldn't find symbolic meta f...
xfail('special.hermite_polynomial_he', ''), # aten.special_hermite_polynomial_he.default - couldn't find symbolic meta...
xfail('special.laguerre_polynomial_l', ''), # aten.special_laguerre_polynomial_l.default - couldn't find symbolic meta...
xfail('special.modified_bessel_i0', ''), # aten.special_modified_bessel_i0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_i1', ''), # aten.special_modified_bessel_i1.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k0', ''), # aten.special_modified_bessel_k0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k1', ''), # aten.special_modified_bessel_k1.default - couldn't find symbolic meta funct...
xfail('special.polygamma', 'special_polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/...
xfail('special.scaled_modified_bessel_k0', ''), # aten.special_scaled_modified_bessel_k0.default - couldn't find symbo...
xfail('special.scaled_modified_bessel_k1', ''), # aten.special_scaled_modified_bessel_k1.default - couldn't find symbo...
xfail('special.xlog1py', ''), # aten.special_xlog1py.default - couldn't find symbolic meta function/decomposition
xfail('split', ''), # 'torch._C.SymIntNode' and 'int'
xfail('stft', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode at...
xfail('sum_to_size', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('svd_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('symeig', ''), # aten.symeig.default - couldn't find symbolic meta function/decomposition
xfail('take_along_dim', ''), # dtype of indices should be Long but got Float
xfail('take', ''), # aten.take.default - couldn't find symbolic meta function/decomposition
xfail('tensordot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('topk', ''), # aten.topk.default - couldn't find symbolic meta function/decomposition
xfail('trapz', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('trapezoid', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('triangular_solve', ''), # aten.triangular_solve.default - couldn't find symbolic meta function/decomposition
xfail('view_as_complex', ''), # aten.view_as_complex.default - couldn't find symbolic meta function/decomposition
xfail('view_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('vsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('unbind', ''), # aten.unbind.int - couldn't find symbolic meta function/decomposition
}
symbolic_tensor_segfaults = {
skip('nn.functional.batch_norm') # Segfault??
}
symbolic_tensor_failures.update(symbolic_tensor_segfaults)
def _test_make_fx_helper(self, device, dtype, op, tracing_mode):
def f(args, kwargs):
return op.op(*args, **kwargs)
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
new_f = None
# Limit ourselves to first 100 inputs so symbolic tracing tests don't take too long
for sample_input in itertools.islice(sample_inputs_itr, 100):
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
try:
new_f = make_fx(f, tracing_mode=tracing_mode)(args, kwargs)
except DynamicOutputShapeException as e:
self.skipTest("Dynamic output shape operation in trace")
for arg in args:
if isinstance(arg, torch.Tensor) and arg.dtype == torch.float:
arg.uniform_(0, 1)
try:
old_out = f(args, kwargs)
except Exception:
continue
new_out = wrapper_set_seed(new_f, args, kwargs)
self.assertEqual(new_out, old_out)
class TestProxyTensorOpInfo(TestCase):
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures)
def test_make_fx_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "real")
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive', make_fx_failures.union(fake_tensor_failures))
def test_make_fx_fake_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "fake")
@skipIfNoSympy
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "symbolic")
only_for = ("cpu")
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()