| from typing import List, Dict, Optional, Tuple |
| import torch |
| import torch.optim._functional as F |
| |
| from torch import Tensor |
| |
| __all__ : List[str] = [] |
| |
| # Define a TorchScript compatible Functional Adam Optimizer |
| # where we use these optimizer in a functional way. |
| # Instead of using the `param.grad` when updating parameters, |
| # we explicitly allow the distributed optimizer pass gradients to |
| # the `step` function. In this way, we could separate the gradients |
| # and parameters and allow multithreaded trainer to update the |
| # parameters without data traces on accumulating to the same .grad. |
| # NOTE: This should be only used by distributed optimizer internals |
| # and not meant to expose to the user. |
| @torch.jit.script |
| class _FunctionalAdam(object): |
| def __init__( |
| self, |
| params: List[Tensor], |
| lr: float = 1e-3, |
| betas: Tuple[float, float] = (0.9, 0.999), |
| eps: float = 1e-8, |
| weight_decay: float = 0.0, |
| amsgrad: bool = False, |
| maximize: bool = False, |
| foreach: bool = False, |
| fused: bool = False, |
| _allow_empty_param_list: bool = False, |
| ): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| if not 0.0 <= betas[0] < 1.0: |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
| if not 0.0 <= betas[1] < 1.0: |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| |
| self.defaults = { |
| "lr": lr, |
| "eps": eps, |
| "beta1": betas[0], |
| "beta2": betas[1], |
| "weight_decay": weight_decay, |
| } |
| self.amsgrad = amsgrad |
| self.maximize = maximize |
| self.foreach = foreach |
| self.fused = fused |
| self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) |
| |
| if len(params) == 0 and not _allow_empty_param_list: |
| raise ValueError("optimizer got an empty parameter list") |
| |
| # NOTE: we only have one param_group and don't allow user to add additional |
| # param group as it's not a common use case. |
| self.param_group = {"params": params} |
| |
| def step_param(self, param: Tensor, grad: Optional[Tensor]): |
| """ |
| Similar to step, but operates on a single parameter and optionally a |
| gradient tensor. |
| """ |
| params = [param] |
| params_with_grad = [] |
| grads = [] |
| exp_avgs = [] |
| exp_avg_sqs = [] |
| max_exp_avg_sqs = [] |
| state_steps: List[Tensor] = [] |
| if grad is not None: |
| params_with_grad.append(param) |
| grads.append(grad) |
| if param not in self.state: |
| self.state[param] = {} |
| state = self.state[param] |
| state['step'] = torch.tensor(0.0) |
| state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| if self.amsgrad: |
| state['max_exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| |
| state = self.state[param] |
| exp_avgs.append(state['exp_avg']) |
| exp_avg_sqs.append(state['exp_avg_sq']) |
| |
| if self.amsgrad: |
| max_exp_avg_sqs.append(state['max_exp_avg_sq']) |
| |
| state_steps.append(state['step']) |
| with torch.no_grad(): |
| F.adam(params_with_grad, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| max_exp_avg_sqs, |
| state_steps, |
| amsgrad=self.amsgrad, |
| maximize=self.maximize, |
| beta1=self.defaults['beta1'], |
| beta2=self.defaults['beta2'], |
| lr=self.defaults['lr'], |
| weight_decay=self.defaults['weight_decay'], |
| eps=self.defaults['eps'], |
| foreach=self.foreach, |
| fused=self.fused, |
| grad_scale=None, |
| found_inf=None) |
| |
| def step(self, gradients: List[Optional[Tensor]]): |
| params = self.param_group['params'] |
| params_with_grad = [] |
| grads = [] |
| exp_avgs = [] |
| exp_avg_sqs = [] |
| max_exp_avg_sqs = [] |
| state_steps: List[Tensor] = [] |
| |
| if len(params) != len(gradients): |
| raise ValueError( |
| "the gradients passed in does not equal to the size of the parameters!" |
| + f"Params length: {len(params)}. " |
| + f"Gradients length: {len(gradients)}" |
| ) |
| |
| for param, gradient in zip(self.param_group['params'], gradients): |
| if gradient is not None: |
| params_with_grad.append(param) |
| grads.append(gradient) |
| # Lazy state initialization |
| if param not in self.state: |
| self.state[param] = {} |
| state = self.state[param] |
| state['step'] = torch.tensor(0.0) |
| # Exponential moving average of gradient values |
| state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| # Exponential moving average of squared gradient values |
| state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| if self.amsgrad: |
| # Maintains max of all exp. moving avg. of sq. grad. values |
| state['max_exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| |
| state = self.state[param] |
| |
| exp_avgs.append(state['exp_avg']) |
| exp_avg_sqs.append(state['exp_avg_sq']) |
| |
| if self.amsgrad: |
| max_exp_avg_sqs.append(state['max_exp_avg_sq']) |
| |
| state_steps.append(state['step']) |
| |
| with torch.no_grad(): |
| F.adam(params_with_grad, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| max_exp_avg_sqs, |
| state_steps, |
| amsgrad=self.amsgrad, |
| maximize=self.maximize, |
| beta1=self.defaults['beta1'], |
| beta2=self.defaults['beta2'], |
| lr=self.defaults['lr'], |
| weight_decay=self.defaults['weight_decay'], |
| eps=self.defaults['eps'], |
| foreach=self.foreach, |
| fused=self.fused, |
| grad_scale=None, |
| found_inf=None) |