| from typing import List, Dict, Optional |
| import torch |
| import torch.optim._functional as F |
| |
| from torch import Tensor |
| |
| __all__ : List[str] = [] |
| |
| # Define a TorchScript compatible Functional RMSprop Optimizer |
| # where we use these optimizer in a functional way. |
| # Instead of using the `param.grad` when updating parameters, |
| # we explicitly allow the distributed optimizer pass gradients to |
| # the `step` function. In this way, we could separate the gradients |
| # and parameters and allow multithreaded trainer to update the |
| # parameters without data traces on accumulating to the same .grad. |
| # NOTE: This should be only used by distributed optimizer internals |
| # and not meant to expose to the user. |
| @torch.jit.script |
| class _FunctionalRMSprop(object): |
| def __init__( |
| self, |
| params: List[Tensor], |
| lr: float = 1e-2, |
| alpha: float = 0.99, |
| eps: float = 1e-8, |
| weight_decay: float = 0.0, |
| momentum: float = 0.0, |
| centered: bool = False, |
| foreach: bool = False, |
| maximize: bool = False, |
| _allow_empty_param_list: bool = False, |
| ): |
| self.defaults = { |
| "lr": lr, |
| "alpha": alpha, |
| "eps": eps, |
| "weight_decay": weight_decay, |
| "momentum": momentum, |
| } |
| self.centered = centered |
| self.foreach = foreach |
| self.maximize = maximize |
| |
| if len(params) == 0 and not _allow_empty_param_list: |
| raise ValueError("optimizer got an empty parameter list") |
| |
| # NOTE: we only have one param_group and don't allow user to add additional |
| # param group as it's not a common use case. |
| self.param_group = {"params": params} |
| |
| self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) |
| |
| def step(self, gradients: List[Optional[Tensor]]): |
| params = self.param_group['params'] |
| params_with_grad = [] |
| grads = [] |
| square_avgs = [] |
| grad_avgs = [] |
| momentum_buffer_list = [] |
| lr = self.defaults['lr'] |
| alpha = self.defaults['alpha'] |
| eps = self.defaults['eps'] |
| momentum = self.defaults['momentum'] |
| weight_decay = self.defaults['weight_decay'] |
| |
| if len(params) != len(gradients): |
| raise ValueError( |
| "the gradients passed in does not equal to the size of the parameters!" |
| + f"Params length: {len(params)}. " |
| + f"Gradients length: {len(gradients)}" |
| ) |
| |
| for param, gradient in zip(params, gradients): |
| if gradient is not None: |
| params_with_grad.append(param) |
| grads.append(gradient) |
| # Lazy state initialization |
| if param not in self.state: |
| self.state[param] = {} |
| state = self.state[param] |
| state['step'] = torch.tensor(0.0) |
| state['square_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| if momentum > 0: |
| state['momentum_buffer'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| if self.centered: |
| state['grad_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format) |
| |
| state = self.state[param] |
| square_avgs.append(state['square_avg']) |
| if momentum > 0: |
| momentum_buffer_list.append(state['momentum_buffer']) |
| if self.centered: |
| grad_avgs.append(state['grad_avg']) |
| |
| state['step'] += 1 |
| |
| with torch.no_grad(): |
| F.rmsprop(params_with_grad, |
| grads, |
| square_avgs, |
| grad_avgs, |
| momentum_buffer_list, |
| lr=lr, |
| alpha=alpha, |
| eps=eps, |
| weight_decay=weight_decay, |
| momentum=momentum, |
| centered=self.centered, |
| foreach=self.foreach, |
| maximize=self.maximize) |